1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "RecordReadThread.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "event_type.h"
#include "get_test_data.h"
#include "record.h"
#include "record_file.h"
using ::testing::_;
using ::testing::Eq;
using ::testing::Return;
using ::testing::Truly;
using namespace simpleperf;
class RecordBufferTest : public ::testing::Test {
protected:
void PushRecord(uint32_t type, size_t size) {
char* p = buffer_->AllocWriteSpace(size);
ASSERT_NE(p, nullptr);
perf_event_header header;
header.type = type;
header.size = size;
memcpy(p, &header, sizeof(header));
buffer_->FinishWrite();
}
void PopRecord(uint32_t type, uint32_t size) {
char* p = buffer_->GetCurrentRecord();
ASSERT_NE(p, nullptr);
perf_event_header header;
memcpy(&header, p, sizeof(header));
ASSERT_EQ(header.type, type);
ASSERT_EQ(header.size, size);
buffer_->MoveToNextRecord();
}
std::unique_ptr<RecordBuffer> buffer_;
};
TEST_F(RecordBufferTest, fifo) {
for (size_t loop = 0; loop < 10; ++loop) {
buffer_.reset(new RecordBuffer(sizeof(perf_event_header) * 10));
size_t record_size = sizeof(perf_event_header) + loop;
size_t max_records_in_buffer = (buffer_->size() - 2 * record_size + 1) / record_size;
uint32_t write_id = 0;
uint32_t read_id = 0;
while (read_id < 100) {
while (write_id < 100 && write_id - read_id < max_records_in_buffer) {
ASSERT_NO_FATAL_FAILURE(PushRecord(write_id++, record_size));
}
ASSERT_NO_FATAL_FAILURE(PopRecord(read_id++, record_size));
}
}
}
TEST(RecordParser, smoke) {
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(
GetTestData(PERF_DATA_NO_UNWIND));
ASSERT_TRUE(reader);
RecordParser parser(*reader->AttrSection()[0].attr);
auto process_record = [&](std::unique_ptr<Record> record) {
if (record->type() == PERF_RECORD_MMAP || record->type() == PERF_RECORD_COMM ||
record->type() == PERF_RECORD_FORK || record->type() == PERF_RECORD_SAMPLE) {
perf_event_header header;
memcpy(&header, record->Binary(), sizeof(header));
auto read_record_fn = [&](size_t pos, size_t size, void* dest) {
memcpy(dest, record->Binary() + pos, size);
};
size_t pos = parser.GetTimePos(header);
ASSERT_NE(0u, pos);
uint64_t time;
read_record_fn(pos, sizeof(time), &time);
ASSERT_EQ(record->Timestamp(), time);
if (record->type() == PERF_RECORD_SAMPLE) {
pos = parser.GetStackSizePos(read_record_fn);
ASSERT_NE(0u, pos);
uint64_t stack_size;
read_record_fn(pos, sizeof(stack_size), &stack_size);
ASSERT_EQ(static_cast<SampleRecord*>(record.get())->stack_user_data.size, stack_size);
}
}
};
ASSERT_TRUE(reader->ReadDataSection([&](std::unique_ptr<Record> record) {
process_record(std::move(record));
return !HasFatalFailure();
}));
}
struct MockEventFd : public EventFd {
MockEventFd(const perf_event_attr& attr, int cpu, char* buffer, size_t buffer_size)
: EventFd(attr, -1, "", 0, cpu) {
mmap_data_buffer_ = buffer;
mmap_data_buffer_size_ = buffer_size;
}
MOCK_METHOD2(CreateMappedBuffer, bool(size_t, bool));
MOCK_METHOD0(DestroyMappedBuffer, void());
MOCK_METHOD2(StartPolling, bool(IOEventLoop&, const std::function<bool()>&));
MOCK_METHOD0(StopPolling, bool());
MOCK_METHOD1(GetAvailableMmapDataSize, size_t(size_t&));
MOCK_METHOD1(DiscardMmapData, void(size_t));
};
static perf_event_attr CreateFakeEventAttr() {
const EventType* type = FindEventTypeByName("cpu-clock");
CHECK(type != nullptr);
return CreateDefaultPerfEventAttr(*type);
}
static std::vector<std::unique_ptr<Record>> CreateFakeRecords(
const perf_event_attr& attr, size_t record_count, size_t stack_size, size_t dyn_stack_size) {
std::vector<std::unique_ptr<Record>> records;
for (size_t i = 0; i < record_count; ++i) {
SampleRecord* r = new SampleRecord(attr, i, i + 1, i + 2, i + 3, i + 4, i + 5, i + 6, {},
std::vector<char>(stack_size), dyn_stack_size);
records.emplace_back(r);
}
return records;
}
static size_t AlignToPowerOfTwo(size_t value) {
size_t result = 1;
while (result < value) {
result <<= 1;
}
return result;
}
static inline std::function<bool(size_t&)> SetArg(size_t value) {
return [value](size_t& arg) {
arg = value;
return true;
};
}
TEST(KernelRecordReader, smoke) {
// 1. Create fake records.
perf_event_attr attr = CreateFakeEventAttr();
std::vector<std::unique_ptr<Record>> records = CreateFakeRecords(attr, 10, 0, 0);
// 2. Create a buffer whose size is power of two.
size_t data_size = records.size() * records[0]->size();
std::vector<char> buffer(AlignToPowerOfTwo(data_size));
// 3. Copy record data into the buffer. Since a record in a kernel buffer can be wrapped around
// to the beginning of the buffer, create the case in the first record.
size_t data_pos = buffer.size() - 4;
memcpy(&buffer[data_pos], records[0]->Binary(), 4);
memcpy(&buffer[0], records[0]->Binary() + 4, records[0]->size() - 4);
size_t pos = records[0]->size() - 4;
for (size_t i = 1; i < records.size(); ++i) {
memcpy(&buffer[pos], records[i]->Binary(), records[i]->size());
pos += records[i]->size();
}
// Read records using KernelRecordReader.
MockEventFd event_fd(attr, 0, buffer.data(), buffer.size());
EXPECT_CALL(event_fd, GetAvailableMmapDataSize(Truly(SetArg(data_pos))))
.Times(1).WillOnce(Return(data_size));
EXPECT_CALL(event_fd, DiscardMmapData(Eq(data_size))).Times(1);
KernelRecordReader reader(&event_fd);
RecordParser parser(attr);
ASSERT_TRUE(reader.GetDataFromKernelBuffer());
for (size_t i = 0; i < records.size(); ++i) {
ASSERT_TRUE(reader.MoveToNextRecord(parser));
ASSERT_EQ(reader.RecordHeader().type, records[i]->type());
ASSERT_EQ(reader.RecordHeader().size, records[i]->size());
ASSERT_EQ(reader.RecordTime(), records[i]->Timestamp());
std::vector<char> data(reader.RecordHeader().size);
reader.ReadRecord(0, data.size(), &data[0]);
ASSERT_EQ(0, memcmp(&data[0], records[i]->Binary(), records[i]->size()));
}
ASSERT_FALSE(reader.MoveToNextRecord(parser));
}
class RecordReadThreadTest : public ::testing::Test {
protected:
std::vector<EventFd*> CreateFakeEventFds(const perf_event_attr& attr, size_t event_fd_count) {
size_t records_per_fd = records_.size() / event_fd_count;
buffers_.clear();
buffers_.resize(event_fd_count);
for (size_t i = 0; i < records_.size(); ++i) {
std::vector<char>& buffer = buffers_[i % event_fd_count];
buffer.insert(buffer.end(), records_[i]->Binary(),
records_[i]->Binary() + records_[i]->size());
}
size_t data_size = records_per_fd * records_[0]->size();
size_t buffer_size = AlignToPowerOfTwo(data_size);
for (auto& buffer : buffers_) {
buffer.resize(buffer_size);
}
event_fds_.resize(event_fd_count);
for (size_t i = 0; i < event_fd_count; ++i) {
event_fds_[i].reset(new MockEventFd(attr, i, buffers_[i].data(), buffer_size));
EXPECT_CALL(*event_fds_[i], CreateMappedBuffer(_, _)).Times(1).WillOnce(Return(true));
EXPECT_CALL(*event_fds_[i], StartPolling(_, _)).Times(1).WillOnce(Return(true));
EXPECT_CALL(*event_fds_[i], GetAvailableMmapDataSize(Truly(SetArg(0)))).Times(1)
.WillOnce(Return(data_size));
EXPECT_CALL(*event_fds_[i], DiscardMmapData(Eq(data_size))).Times(1);
EXPECT_CALL(*event_fds_[i], StopPolling()).Times(1).WillOnce(Return(true));
EXPECT_CALL(*event_fds_[i], DestroyMappedBuffer()).Times(1);
}
std::vector<EventFd*> result;
for (auto& fd : event_fds_) {
result.push_back(fd.get());
}
return result;
}
std::vector<std::unique_ptr<Record>> records_;
std::vector<std::vector<char>> buffers_;
std::vector<std::unique_ptr<MockEventFd>> event_fds_;
};
TEST_F(RecordReadThreadTest, handle_cmds) {
perf_event_attr attr = CreateFakeEventAttr();
records_ = CreateFakeRecords(attr, 2, 0, 0);
std::vector<EventFd*> event_fds = CreateFakeEventFds(attr, 2);
RecordReadThread thread(128 * 1024, event_fds[0]->attr(), 1, 1);
IOEventLoop loop;
bool has_notify = false;
auto callback = [&]() {
has_notify = true;
return loop.ExitLoop();
};
ASSERT_TRUE(thread.RegisterDataCallback(loop, callback));
ASSERT_TRUE(thread.AddEventFds(event_fds));
ASSERT_TRUE(thread.SyncKernelBuffer());
ASSERT_TRUE(loop.RunLoop());
ASSERT_TRUE(has_notify);
ASSERT_TRUE(thread.GetRecord());
ASSERT_TRUE(thread.RemoveEventFds(event_fds));
ASSERT_TRUE(thread.StopReadThread());
}
TEST_F(RecordReadThreadTest, read_records) {
perf_event_attr attr = CreateFakeEventAttr();
RecordReadThread thread(128 * 1024, attr, 1, 1);
IOEventLoop loop;
size_t record_index;
auto callback = [&]() {
while (true) {
std::unique_ptr<Record> r = thread.GetRecord();
if (!r) {
break;
}
std::unique_ptr<Record>& expected = records_[record_index++];
if (r->size() != expected->size() ||
memcmp(r->Binary(), expected->Binary(), r->size()) != 0) {
return false;
}
}
return loop.ExitLoop();
};
ASSERT_TRUE(thread.RegisterDataCallback(loop, callback));
for (size_t event_fd_count = 1; event_fd_count < 10; ++event_fd_count) {
records_ = CreateFakeRecords(attr, event_fd_count * 10, 0, 0);
std::vector<EventFd*> event_fds = CreateFakeEventFds(attr, event_fd_count);
record_index = 0;
ASSERT_TRUE(thread.AddEventFds(event_fds));
ASSERT_TRUE(thread.SyncKernelBuffer());
ASSERT_TRUE(loop.RunLoop());
ASSERT_EQ(record_index, records_.size());
ASSERT_TRUE(thread.RemoveEventFds(event_fds));
}
}
TEST_F(RecordReadThreadTest, process_sample_record) {
perf_event_attr attr = CreateFakeEventAttr();
attr.sample_type |= PERF_SAMPLE_STACK_USER;
attr.sample_stack_user = 64 * 1024;
size_t record_buffer_size = 128 * 1024;
RecordReadThread thread(record_buffer_size, attr, 1, 1);
IOEventLoop loop;
ASSERT_TRUE(thread.RegisterDataCallback(loop, []() { return true; }));
auto read_record = [&](std::unique_ptr<Record>& r) {
std::vector<EventFd*> event_fds = CreateFakeEventFds(attr, 1);
ASSERT_TRUE(thread.AddEventFds(event_fds));
ASSERT_TRUE(thread.SyncKernelBuffer());
ASSERT_TRUE(thread.RemoveEventFds(event_fds));
r = thread.GetRecord();
};
// When the free space in record buffer is above low level, only invalid stack data in sample
// records is removed.
thread.SetBufferLevels(0, 0);
records_ = CreateFakeRecords(attr, 1, 8192, 8192);
std::unique_ptr<Record> r;
read_record(r);
ASSERT_TRUE(r);
SampleRecord* sr = static_cast<SampleRecord*>(r.get());
ASSERT_EQ(sr->stack_user_data.size, 8192u);
ASSERT_EQ(sr->stack_user_data.dyn_size, 8192u);
records_ = CreateFakeRecords(attr, 1, 8192, 4096);
read_record(r);
ASSERT_TRUE(r);
sr = static_cast<SampleRecord*>(r.get());
ASSERT_EQ(sr->stack_user_data.size, 4096u);
ASSERT_EQ(sr->stack_user_data.dyn_size, 4096u);
// When the free space in record buffer is below low level but above critical level, only
// 1K stack data in sample records is left.
thread.SetBufferLevels(record_buffer_size, 0);
read_record(r);
ASSERT_TRUE(r);
sr = static_cast<SampleRecord*>(r.get());
ASSERT_EQ(sr->stack_user_data.size, 1024u);
ASSERT_EQ(sr->stack_user_data.dyn_size, 1024u);
// When the free space in record buffer is below critical level, sample records are dropped.
thread.SetBufferLevels(record_buffer_size, record_buffer_size);
read_record(r);
ASSERT_FALSE(r);
size_t lost_samples;
size_t lost_non_samples;
size_t cut_stack_samples;
thread.GetLostRecords(&lost_samples, &lost_non_samples, &cut_stack_samples);
ASSERT_EQ(lost_samples, 1u);
ASSERT_EQ(lost_non_samples, 0u);
ASSERT_EQ(cut_stack_samples, 1u);
}
// Test that the data notification exists until the RecordBuffer is empty. So we can read all
// records even if reading one record at a time.
TEST_F(RecordReadThreadTest, has_data_notification_until_buffer_empty) {
perf_event_attr attr = CreateFakeEventAttr();
RecordReadThread thread(128 * 1024, attr, 1, 1);
IOEventLoop loop;
size_t record_index = 0;
auto read_one_record = [&]() {
std::unique_ptr<Record> r = thread.GetRecord();
if (!r) {
return loop.ExitLoop();
}
std::unique_ptr<Record>& expected = records_[record_index++];
if (r->size() != expected->size() || memcmp(r->Binary(), expected->Binary(), r->size()) != 0) {
return false;
}
return true;
};
ASSERT_TRUE(thread.RegisterDataCallback(loop, read_one_record));
records_ = CreateFakeRecords(attr, 2, 0, 0);
std::vector<EventFd*> event_fds = CreateFakeEventFds(attr, 1);
ASSERT_TRUE(thread.AddEventFds(event_fds));
ASSERT_TRUE(thread.SyncKernelBuffer());
ASSERT_TRUE(loop.RunLoop());
ASSERT_EQ(record_index, records_.size());
ASSERT_TRUE(thread.RemoveEventFds(event_fds));
}
|