1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <memory>
#include <queue>
#include <string>
#include <unordered_map>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "command.h"
#include "event_selection_set.h"
#include "record.h"
#include "record_file.h"
#include "SampleDisplayer.h"
#include "tracing.h"
#include "utils.h"
using android::base::StringPrintf;
namespace {
struct SampleInfo {
uint64_t timestamp; // the time when the kernel generates the sample
uint64_t runtime_in_ns; // the runtime of the thread in the sample
SampleInfo(uint64_t timestamp = 0, uint64_t runtime_in_ns = 0)
: timestamp(timestamp), runtime_in_ns(runtime_in_ns) {}
};
struct SpinInfo {
uint64_t spinloop_count = 0;
double max_rate = 0;
uint64_t max_rate_start_timestamp = 0;
uint64_t max_rate_end_timestamp = 0;
std::queue<SampleInfo> samples_in_check_period;
uint64_t runtime_in_check_period = 0;
};
struct ThreadInfo {
pid_t process_id = 0;
pid_t thread_id = 0;
std::string name;
uint64_t total_runtime_in_ns = 0;
SpinInfo spin_info;
};
struct ProcessInfo {
pid_t process_id = 0;
std::string name;
uint64_t total_runtime_in_ns = 0;
std::vector<const ThreadInfo*> threads;
};
class TraceSchedCommand : public Command {
public:
TraceSchedCommand()
: Command("trace-sched", "Trace system-wide process runtime events.",
// clang-format off
"Records system-wide sched:sched_stat_runtime events, reports runtime taken\n"
"by each process during recording, and optionally warns about processes which\n"
"may have spinloops.\n"
"Usage: simpleperf trace-sched [options]\n"
"--duration time_in_sec Monitor for time_in_sec seconds. Here time_in_sec may\n"
" be any positive floating point number. Default is 10.\n"
"--check-spinloop check_period_in_sec\n"
" Give warning for threads which may be spinning. A thread is\n"
" thought of spinning on the CPU, when it takes more than\n"
" [spin-rate] * [check_period] cpu time in any [check_period].\n"
" [spin-rate] can be set by --spin-rate. Default check_period is 1 sec.\n"
"--spin-rate spin-rate Default is 0.8. Vaild range is (0, 1].\n"
"--show-threads Show runtime of each thread.\n"
"--record-file file_path Read records from file_path.\n"
// clang-format on
),
duration_in_sec_(10.0),
spinloop_check_period_in_sec_(1.0),
spinloop_check_rate_(0.8),
show_threads_(false) {
}
bool Run(const std::vector<std::string>& args);
private:
bool ParseOptions(const std::vector<std::string>& args);
bool RecordSchedEvents(const std::string& record_file_path);
bool ParseSchedEvents(const std::string& record_file_path);
void ProcessRecord(Record& record);
void ProcessSampleRecord(const SampleRecord& record);
std::vector<ProcessInfo> BuildProcessInfo();
void ReportProcessInfo(const std::vector<ProcessInfo>& processes);
double duration_in_sec_;
double spinloop_check_period_in_sec_;
double spinloop_check_rate_;
bool show_threads_;
std::string record_file_;
StringTracingFieldPlace tracing_field_comm_;
TracingFieldPlace tracing_field_runtime_;
std::unordered_map<pid_t, ThreadInfo> thread_map_;
};
bool TraceSchedCommand::Run(const std::vector<std::string>& args) {
if (!ParseOptions(args)) {
return false;
}
TemporaryFile tmp_file;
if (record_file_.empty()) {
if (!RecordSchedEvents(tmp_file.path)) {
return false;
}
record_file_ = tmp_file.path;
}
if (!ParseSchedEvents(record_file_)) {
return false;
}
std::vector<ProcessInfo> processes = BuildProcessInfo();
ReportProcessInfo(processes);
return true;
}
bool TraceSchedCommand::ParseOptions(const std::vector<std::string>& args) {
size_t i;
for (i = 0; i < args.size(); ++i) {
if (args[i] == "--duration") {
if (!GetDoubleOption(args, &i, &duration_in_sec_, 1e-9)) {
return false;
}
} else if (args[i] == "--check-spinloop") {
if (!GetDoubleOption(args, &i, &spinloop_check_period_in_sec_, 1e-9)) {
return false;
}
} else if (args[i] == "--spin-rate") {
if (!GetDoubleOption(args, &i, &spinloop_check_rate_, 1e-9, 1.0)) {
return false;
}
} else if (args[i] == "--show-threads") {
show_threads_ = true;
} else if (args[i] == "--record-file") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
record_file_ = args[i];
} else {
ReportUnknownOption(args, i);
return false;
}
}
return true;
}
bool TraceSchedCommand::RecordSchedEvents(const std::string& record_file_path) {
if (!IsRoot()) {
LOG(ERROR) << "Need root privilege to trace system wide events.\n";
return false;
}
std::unique_ptr<Command> record_cmd = CreateCommandInstance("record");
CHECK(record_cmd);
std::vector<std::string> record_args = {"-e", "sched:sched_stat_runtime", "-a",
"--duration", std::to_string(duration_in_sec_),
"-o", record_file_path};
if (IsSettingClockIdSupported()) {
record_args.push_back("--clockid");
record_args.push_back("monotonic");
}
return record_cmd->Run(record_args);
}
bool TraceSchedCommand::ParseSchedEvents(const std::string& record_file_path) {
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(record_file_path);
if (!reader) {
return false;
}
std::unique_ptr<ScopedEventTypes> scoped_event_types;
if (reader->HasFeature(PerfFileFormat::FEAT_META_INFO)) {
std::unordered_map<std::string, std::string> meta_info;
if (!reader->ReadMetaInfoFeature(&meta_info)) {
return false;
}
auto it = meta_info.find("event_type_info");
if (it != meta_info.end()) {
scoped_event_types.reset(new ScopedEventTypes(it->second));
}
}
const EventType* event = FindEventTypeByName("sched:sched_stat_runtime");
std::vector<EventAttrWithId> attrs = reader->AttrSection();
if (attrs.size() != 1u || attrs[0].attr->type != event->type ||
attrs[0].attr->config != event->config) {
LOG(ERROR) << "sched:sched_stat_runtime isn't recorded in " << record_file_path;
return false;
}
auto callback = [this](std::unique_ptr<Record> record) {
ProcessRecord(*record);
return true;
};
return reader->ReadDataSection(callback);
}
void TraceSchedCommand::ProcessRecord(Record& record) {
switch (record.type()) {
case PERF_RECORD_SAMPLE: {
ProcessSampleRecord(*static_cast<SampleRecord*>(&record));
break;
}
case PERF_RECORD_COMM: {
const CommRecord& r = *static_cast<const CommRecord*>(&record);
auto& thread = thread_map_[r.data->tid];
thread.process_id = r.data->pid;
thread.thread_id = r.data->tid;
thread.name = r.comm;
break;
}
case PERF_RECORD_FORK: {
const ForkRecord& r = *static_cast<const ForkRecord*>(&record);
auto& parent_thread = thread_map_[r.data->ptid];
auto& child_thread = thread_map_[r.data->tid];
parent_thread.process_id = r.data->ppid;
parent_thread.thread_id = r.data->ptid;
child_thread.process_id = r.data->pid;
child_thread.thread_id = r.data->tid;
child_thread.name = parent_thread.name;
break;
}
case PERF_RECORD_TRACING_DATA:
case SIMPLE_PERF_RECORD_TRACING_DATA: {
const TracingDataRecord& r = *static_cast<const TracingDataRecord*>(&record);
Tracing tracing(std::vector<char>(r.data, r.data + r.data_size));
const EventType* event = FindEventTypeByName("sched:sched_stat_runtime");
CHECK(event != nullptr);
TracingFormat format = tracing.GetTracingFormatHavingId(event->config);
format.GetField("comm", tracing_field_comm_);
format.GetField("runtime", tracing_field_runtime_);
break;
}
}
}
void TraceSchedCommand::ProcessSampleRecord(const SampleRecord& record) {
std::string thread_name = tracing_field_comm_.ReadFromData(record.raw_data.data);
uint64_t runtime = tracing_field_runtime_.ReadFromData(record.raw_data.data);
ThreadInfo& thread = thread_map_[record.tid_data.tid];
thread.process_id = record.tid_data.pid;
thread.thread_id = record.tid_data.tid;
thread.name = thread_name;
thread.total_runtime_in_ns += runtime;
SpinInfo& spin_info = thread.spin_info;
spin_info.runtime_in_check_period += runtime;
spin_info.samples_in_check_period.push(SampleInfo(record.Timestamp(), runtime));
// Check spin loop.
if (thread.spin_info.samples_in_check_period.size() == 1u) {
return;
}
uint64_t start_timestamp = spin_info.samples_in_check_period.front().timestamp;
uint64_t time_period_in_ns = record.Timestamp() - start_timestamp;
if (time_period_in_ns < spinloop_check_period_in_sec_ * 1e9) {
return;
}
if (thread.spin_info.runtime_in_check_period > time_period_in_ns * spinloop_check_rate_) {
// Detect a spin loop.
thread.spin_info.spinloop_count++;
double rate = std::min(1.0,
static_cast<double>(thread.spin_info.runtime_in_check_period) / time_period_in_ns);
if (rate > thread.spin_info.max_rate) {
thread.spin_info.max_rate = rate;
thread.spin_info.max_rate_start_timestamp = start_timestamp;
thread.spin_info.max_rate_end_timestamp = record.Timestamp();
// Clear samples to avoid overlapped spin loop periods.
std::queue<SampleInfo> empty_q;
std::swap(thread.spin_info.samples_in_check_period, empty_q);
thread.spin_info.runtime_in_check_period = 0;
} else {
thread.spin_info.runtime_in_check_period -=
spin_info.samples_in_check_period.front().runtime_in_ns;
thread.spin_info.samples_in_check_period.pop();
}
}
}
std::vector<ProcessInfo> TraceSchedCommand::BuildProcessInfo() {
std::unordered_map<pid_t, ProcessInfo> process_map;
for (auto& pair : thread_map_) {
const ThreadInfo& thread = pair.second;
// No need to report simpleperf.
if (thread.name == "simpleperf") {
continue;
}
ProcessInfo& process = process_map[thread.process_id];
process.process_id = thread.process_id;
if (thread.process_id == thread.thread_id) {
process.name = thread.name;
}
process.total_runtime_in_ns += thread.total_runtime_in_ns;
process.threads.push_back(&thread);
}
std::vector<ProcessInfo> processes;
for (auto& pair : process_map) {
processes.push_back(pair.second);
}
auto sort_process = [](const ProcessInfo& p1, const ProcessInfo& p2) {
return p1.total_runtime_in_ns > p2.total_runtime_in_ns;
};
auto sort_thread = [](const ThreadInfo* t1, const ThreadInfo* t2) {
return t1->total_runtime_in_ns > t2->total_runtime_in_ns;
};
std::sort(processes.begin(), processes.end(), sort_process);
for (auto& process : processes) {
std::sort(process.threads.begin(), process.threads.end(), sort_thread);
}
return processes;
}
void TraceSchedCommand::ReportProcessInfo(const std::vector<ProcessInfo>& processes) {
uint64_t total_runtime_in_ns = 0u;
for (auto& process : processes) {
total_runtime_in_ns += process.total_runtime_in_ns;
}
printf("Total Runtime: %.3f ms\n", total_runtime_in_ns / 1e6);
struct ReportEntry {
bool is_process = false;
uint64_t runtime_in_ns = 0;
double percentage = 0;
pid_t pid = 0;
std::string name;
};
std::vector<ReportEntry> entries;
for (auto& process : processes) {
ReportEntry entry;
entry.is_process = true;
entry.runtime_in_ns = process.total_runtime_in_ns;
entry.pid = process.process_id;
entry.name = process.name;
entry.percentage = 0.0;
if (total_runtime_in_ns != 0u) {
entry.percentage = 100.0 * process.total_runtime_in_ns / total_runtime_in_ns;
}
// Omit processes taken too small percentage.
if (entry.percentage < 0.01) {
continue;
}
entries.push_back(entry);
if (show_threads_) {
for (auto& thread : process.threads) {
ReportEntry entry;
entry.is_process = false;
entry.runtime_in_ns = thread->total_runtime_in_ns;
entry.pid = thread->thread_id;
entry.name = thread->name;
entry.percentage = 0.0;
if (total_runtime_in_ns != 0u) {
entry.percentage = 100.0 * thread->total_runtime_in_ns / total_runtime_in_ns;
}
// Omit threads taken too small percentage.
if (entry.percentage < 0.01) {
continue;
}
entries.push_back(entry);
}
}
}
SampleDisplayer<ReportEntry, uint64_t> displayer;
if (show_threads_) {
displayer.AddDisplayFunction("Type", [](const ReportEntry* entry) -> std::string {
return entry->is_process ? "Process" : "Thread";
});
}
displayer.AddDisplayFunction("Runtime", [](const ReportEntry* entry) {
return StringPrintf("%.3f ms", entry->runtime_in_ns / 1e6);
});
displayer.AddDisplayFunction("Percentage", [](const ReportEntry* entry) {
return StringPrintf("%.2f%%", entry->percentage);
});
displayer.AddDisplayFunction("Pid", [](const ReportEntry* entry) {
return StringPrintf("%d", entry->pid);
});
displayer.AddDisplayFunction("Name", [](const ReportEntry* entry) {
return entry->name;
});
for (auto& entry : entries) {
displayer.AdjustWidth(&entry);
}
displayer.PrintNames(stdout);
for (auto& entry : entries) {
displayer.PrintSample(stdout, &entry);
}
for (auto& process : processes) {
for (auto& thread : process.threads) {
if (thread->spin_info.spinloop_count != 0u) {
double percentage = 100.0 * thread->spin_info.max_rate;
double duration_in_ns = thread->spin_info.max_rate_end_timestamp -
thread->spin_info.max_rate_start_timestamp;
double running_time_in_ns = duration_in_ns * thread->spin_info.max_rate;
printf("Detect %" PRIu64 " spin loops in process %s (%d) thread %s (%d),\n"
"max rate at [%.6f s - %.6f s], taken %.3f ms / %.3f ms (%.2f%%).\n",
thread->spin_info.spinloop_count, process.name.c_str(), process.process_id,
thread->name.c_str(), thread->thread_id,
thread->spin_info.max_rate_start_timestamp / 1e9,
thread->spin_info.max_rate_end_timestamp / 1e9,
running_time_in_ns / 1e6, duration_in_ns / 1e6,
percentage);
}
}
}
}
} // namespace
void RegisterTraceSchedCommand() {
RegisterCommand("trace-sched", [] { return std::unique_ptr<Command>(new TraceSchedCommand()); });
}
|