1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SIMPLE_PERF_SAMPLE_TREE_H_
#define SIMPLE_PERF_SAMPLE_TREE_H_
#include <unordered_map>
#include "callchain.h"
#include "OfflineUnwinder.h"
#include "perf_regs.h"
#include "record.h"
#include "SampleComparator.h"
#include "SampleDisplayer.h"
#include "thread_tree.h"
using namespace simpleperf;
// A SampleTree is a collection of samples. A profiling report is mainly about
// constructing a SampleTree and display it. There are three steps involved:
// build the tree, sort the tree, and display it. For example, if we want to
// show how many cpu-cycles are spent in different functions, we should do as
// follows:
// 1. Build a SampleTree from SampleRecords with each sample containing
// (cpu-cycles, function name). When building the tree, we should merge
// samples containing the same function name.
// 2. Sort the SampleTree by cpu-cycles in the sample. As we want to display the
// samples in a decreasing order of cpu-cycles, we should sort it like this.
// 3. Display the SampleTree, each sample prints its (cpu-cycles, function name)
// pair.
//
// We represent the three steps with three template classes.
// 1. A SampleTree is built by SampleTreeBuilder. The comparator passed in
// SampleTreeBuilder's constructor decides the property of samples should be
// merged together.
// 2. After a SampleTree is built and got from SampleTreeBuilder, it should be
// sorted by SampleTreeSorter. The sort result decides the order to show
// samples.
// 3. At last, the sorted SampleTree is passed to SampleTreeDisplayer, which
// displays each sample in the SampleTree.
template <typename EntryT, typename AccumulateInfoT>
class SampleTreeBuilder {
public:
explicit SampleTreeBuilder(const SampleComparator<EntryT>& comparator)
: sample_set_(comparator),
accumulate_callchain_(false),
sample_comparator_(comparator),
callchain_sample_set_(comparator),
use_branch_address_(false),
build_callchain_(false),
use_caller_as_callchain_root_(false) {}
virtual ~SampleTreeBuilder() {}
void SetBranchSampleOption(bool use_branch_address) {
use_branch_address_ = use_branch_address;
}
void SetCallChainSampleOptions(bool accumulate_callchain,
bool build_callchain,
bool use_caller_as_callchain_root) {
accumulate_callchain_ = accumulate_callchain;
build_callchain_ = build_callchain;
use_caller_as_callchain_root_ = use_caller_as_callchain_root;
if (accumulate_callchain_) {
offline_unwinder_.reset(new OfflineUnwinder(false));
}
}
void ProcessSampleRecord(const SampleRecord& r) {
if (use_branch_address_ && (r.sample_type & PERF_SAMPLE_BRANCH_STACK)) {
for (uint64_t i = 0; i < r.branch_stack_data.stack_nr; ++i) {
auto& item = r.branch_stack_data.stack[i];
if (item.from != 0 && item.to != 0) {
CreateBranchSample(r, item);
}
}
return;
}
bool in_kernel = r.InKernel();
AccumulateInfoT acc_info;
EntryT* sample = CreateSample(r, in_kernel, &acc_info);
if (sample == nullptr) {
return;
}
if (accumulate_callchain_) {
std::vector<uint64_t> ips;
if (r.sample_type & PERF_SAMPLE_CALLCHAIN) {
ips.insert(ips.end(), r.callchain_data.ips,
r.callchain_data.ips + r.callchain_data.ip_nr);
}
const ThreadEntry* thread = GetThreadOfSample(sample);
// Use stack_user_data.data.size() instead of stack_user_data.dyn_size, to
// make up for the missing kernel patch in N9. See b/22612370.
if (thread != nullptr && (r.sample_type & PERF_SAMPLE_REGS_USER) &&
(r.regs_user_data.reg_mask != 0) &&
(r.sample_type & PERF_SAMPLE_STACK_USER) &&
(r.GetValidStackSize() > 0)) {
RegSet regs(r.regs_user_data.abi, r.regs_user_data.reg_mask, r.regs_user_data.regs);
std::vector<uint64_t> user_ips;
std::vector<uint64_t> sps;
if (offline_unwinder_->UnwindCallChain(*thread, regs, r.stack_user_data.data,
r.GetValidStackSize(), &user_ips, &sps)) {
ips.push_back(PERF_CONTEXT_USER);
ips.insert(ips.end(), user_ips.begin(), user_ips.end());
}
}
std::vector<EntryT*> callchain;
callchain.push_back(sample);
bool first_ip = true;
for (auto& ip : ips) {
if (ip >= PERF_CONTEXT_MAX) {
switch (ip) {
case PERF_CONTEXT_KERNEL:
in_kernel = true;
break;
case PERF_CONTEXT_USER:
in_kernel = false;
break;
default:
LOG(DEBUG) << "Unexpected perf_context in callchain: " << ip;
}
} else {
if (first_ip) {
first_ip = false;
// Remove duplication with sampled ip.
if (ip == r.ip_data.ip) {
continue;
}
}
EntryT* callchain_sample =
CreateCallChainSample(sample, ip, in_kernel, callchain, acc_info);
if (callchain_sample == nullptr) {
break;
}
callchain.push_back(callchain_sample);
}
}
if (build_callchain_) {
std::set<EntryT*> added_set;
if (use_caller_as_callchain_root_) {
std::reverse(callchain.begin(), callchain.end());
}
EntryT* parent = nullptr;
while (callchain.size() >= 2) {
EntryT* sample = callchain[0];
callchain.erase(callchain.begin());
// Add only once for recursive calls on callchain.
if (added_set.find(sample) != added_set.end()) {
continue;
}
added_set.insert(sample);
InsertCallChainForSample(sample, callchain, acc_info);
UpdateCallChainParentInfo(sample, parent);
parent = sample;
}
}
}
}
std::vector<EntryT*> GetSamples() const {
std::vector<EntryT*> result;
for (auto& entry : sample_set_) {
result.push_back(entry);
}
return result;
}
protected:
virtual EntryT* CreateSample(const SampleRecord& r, bool in_kernel,
AccumulateInfoT* acc_info) = 0;
virtual EntryT* CreateBranchSample(const SampleRecord& r,
const BranchStackItemType& item) = 0;
virtual EntryT* CreateCallChainSample(const EntryT* sample, uint64_t ip,
bool in_kernel,
const std::vector<EntryT*>& callchain,
const AccumulateInfoT& acc_info) = 0;
virtual const ThreadEntry* GetThreadOfSample(EntryT*) = 0;
virtual uint64_t GetPeriodForCallChain(const AccumulateInfoT& acc_info) = 0;
virtual bool FilterSample(const EntryT*) { return true; }
virtual void UpdateSummary(const EntryT*) {}
virtual void MergeSample(EntryT* sample1, EntryT* sample2) = 0;
EntryT* InsertSample(std::unique_ptr<EntryT> sample) {
if (sample == nullptr || !FilterSample(sample.get())) {
return nullptr;
}
UpdateSummary(sample.get());
EntryT* result;
auto it = sample_set_.find(sample.get());
if (it == sample_set_.end()) {
result = sample.get();
sample_set_.insert(sample.get());
sample_storage_.push_back(std::move(sample));
} else {
result = *it;
MergeSample(*it, sample.get());
}
return result;
}
EntryT* InsertCallChainSample(std::unique_ptr<EntryT> sample,
const std::vector<EntryT*>& callchain) {
if (sample == nullptr) {
return nullptr;
}
if (!FilterSample(sample.get())) {
// Store in callchain_sample_set_ for use in other EntryT's callchain.
auto it = callchain_sample_set_.find(sample.get());
if (it != callchain_sample_set_.end()) {
return *it;
}
EntryT* result = sample.get();
callchain_sample_set_.insert(sample.get());
sample_storage_.push_back(std::move(sample));
return result;
}
auto it = sample_set_.find(sample.get());
if (it != sample_set_.end()) {
EntryT* sample = *it;
// Process only once for recursive function call.
if (std::find(callchain.begin(), callchain.end(), sample) !=
callchain.end()) {
return sample;
}
}
return InsertSample(std::move(sample));
}
void InsertCallChainForSample(EntryT* sample,
const std::vector<EntryT*>& callchain,
const AccumulateInfoT& acc_info) {
uint64_t period = GetPeriodForCallChain(acc_info);
sample->callchain.AddCallChain(
callchain, period, [&](const EntryT* s1, const EntryT* s2) {
return sample_comparator_.IsSameSample(s1, s2);
});
}
void AddCallChainDuplicateInfo() {
if (build_callchain_) {
for (EntryT* sample : sample_set_) {
auto it = callchain_parent_map_.find(sample);
if (it != callchain_parent_map_.end() && !it->second.has_multiple_parents) {
sample->callchain.duplicated = true;
}
}
}
}
std::set<EntryT*, SampleComparator<EntryT>> sample_set_;
bool accumulate_callchain_;
private:
void UpdateCallChainParentInfo(EntryT* sample, EntryT* parent) {
if (parent == nullptr) {
return;
}
auto it = callchain_parent_map_.find(sample);
if (it == callchain_parent_map_.end()) {
CallChainParentInfo info;
info.parent = parent;
info.has_multiple_parents = false;
callchain_parent_map_[sample] = info;
} else if (it->second.parent != parent) {
it->second.has_multiple_parents = true;
}
}
const SampleComparator<EntryT> sample_comparator_;
// If a CallChainSample is filtered out, it is stored in callchain_sample_set_
// and only used in other EntryT's callchain.
std::set<EntryT*, SampleComparator<EntryT>> callchain_sample_set_;
std::vector<std::unique_ptr<EntryT>> sample_storage_;
struct CallChainParentInfo {
EntryT* parent;
bool has_multiple_parents;
};
std::unordered_map<EntryT*, CallChainParentInfo> callchain_parent_map_;
bool use_branch_address_;
bool build_callchain_;
bool use_caller_as_callchain_root_;
std::unique_ptr<OfflineUnwinder> offline_unwinder_;
};
template <typename EntryT>
class SampleTreeSorter {
public:
explicit SampleTreeSorter(SampleComparator<EntryT> comparator)
: comparator_(comparator) {}
virtual ~SampleTreeSorter() {}
void Sort(std::vector<EntryT*>& v, bool sort_callchain) {
if (sort_callchain) {
for (auto& sample : v) {
SortCallChain(sample);
}
}
if (!comparator_.empty()) {
std::sort(v.begin(), v.end(), [this](const EntryT* s1, const EntryT* s2) {
return comparator_(s1, s2);
});
}
}
protected:
void SortCallChain(EntryT* sample) { sample->callchain.SortByPeriod(); }
private:
SampleComparator<EntryT> comparator_;
};
template <typename EntryT, typename InfoT>
class SampleTreeDisplayer {
public:
explicit SampleTreeDisplayer(SampleDisplayer<EntryT, InfoT> displayer)
: displayer_(displayer) {}
virtual ~SampleTreeDisplayer() {}
void DisplaySamples(FILE* fp, const std::vector<EntryT*>& samples,
const InfoT* info) {
displayer_.SetInfo(info);
for (const auto& sample : samples) {
displayer_.AdjustWidth(sample);
}
displayer_.PrintNames(fp);
for (const auto& sample : samples) {
displayer_.PrintSample(fp, sample);
}
}
private:
SampleDisplayer<EntryT, InfoT> displayer_;
};
#endif // SIMPLE_PERF_SAMPLE_TREE_H_
|