1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
|
/*
** Copyright 2010 The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
/*
* Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads/strcmp.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <sched.h>
#include <sys/resource.h>
#include <time.h>
#include <unistd.h>
// The default size of data that will be manipulated in each iteration of
// a memory benchmark. Can be modified with the --data_size option.
#define DEFAULT_DATA_SIZE 1000000000
// The amount of memory allocated for the cold benchmarks to use.
#define DEFAULT_COLD_DATA_SIZE 128*1024*1024
// The default size of the stride between each buffer for cold benchmarks.
#define DEFAULT_COLD_STRIDE_SIZE 4096
// Number of nanoseconds in a second.
#define NS_PER_SEC 1000000000
// The maximum number of arguments that a benchmark will accept.
#define MAX_ARGS 2
// Default memory alignment of malloc.
#define DEFAULT_MALLOC_MEMORY_ALIGNMENT 8
// Contains information about benchmark options.
typedef struct {
bool print_average;
bool print_each_iter;
int dst_align;
int dst_or_mask;
int src_align;
int src_or_mask;
int cpu_to_lock;
int data_size;
int dst_str_size;
int cold_data_size;
int cold_stride_size;
int args[MAX_ARGS];
int num_args;
} command_data_t;
typedef void *(*void_func_t)();
typedef void *(*memcpy_func_t)(void *, const void *, size_t);
typedef void *(*memset_func_t)(void *, int, size_t);
typedef int (*strcmp_func_t)(const char *, const char *);
typedef char *(*str_func_t)(char *, const char *);
typedef size_t (*strlen_func_t)(const char *);
// Struct that contains a mapping of benchmark name to benchmark function.
typedef struct {
const char *name;
int (*ptr)(const char *, const command_data_t &, void_func_t func);
void_func_t func;
} function_t;
// Get the current time in nanoseconds.
uint64_t nanoTime() {
struct timespec t;
t.tv_sec = t.tv_nsec = 0;
clock_gettime(CLOCK_MONOTONIC, &t);
return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec;
}
// Static analyzer warns about potential memory leak of orig_ptr
// in getAlignedMemory. That is true and the callers in this program
// do not free orig_ptr. But, we don't care about that in this
// going-obsolete test program. So, here is a hack to trick the
// static analyzer.
static void *saved_orig_ptr;
// Allocate memory with a specific alignment and return that pointer.
// This function assumes an alignment value that is a power of 2.
// If the alignment is 0, then use the pointer returned by malloc.
uint8_t *getAlignedMemory(uint8_t *orig_ptr, int alignment, int or_mask) {
uint64_t ptr = reinterpret_cast<uint64_t>(orig_ptr);
saved_orig_ptr = orig_ptr;
if (alignment > 0) {
// When setting the alignment, set it to exactly the alignment chosen.
// The pointer returned will be guaranteed not to be aligned to anything
// more than that.
ptr += alignment - (ptr & (alignment - 1));
ptr |= alignment | or_mask;
}
return reinterpret_cast<uint8_t*>(ptr);
}
// Allocate memory with a specific alignment and return that pointer.
// This function assumes an alignment value that is a power of 2.
// If the alignment is 0, then use the pointer returned by malloc.
uint8_t *allocateAlignedMemory(size_t size, int alignment, int or_mask) {
uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 3 * alignment));
if (!ptr)
return NULL;
return getAlignedMemory((uint8_t*)ptr, alignment, or_mask);
}
void initString(uint8_t *buf, size_t size) {
for (size_t i = 0; i < size - 1; i++) {
buf[i] = static_cast<char>(32 + (i % 96));
}
buf[size-1] = '\0';
}
static inline double computeAverage(uint64_t time_ns, size_t size, size_t copies) {
return ((size/1024.0) * copies) / ((double)time_ns/NS_PER_SEC);
}
static inline double computeRunningAvg(double avg, double running_avg, size_t cur_idx) {
return (running_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1));
}
static inline double computeRunningSquareAvg(double avg, double square_avg, size_t cur_idx) {
return (square_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)) * avg;
}
static inline double computeStdDev(double square_avg, double running_avg) {
return sqrt(square_avg - running_avg * running_avg);
}
static inline void printIter(uint64_t time_ns, const char *name, size_t size, size_t copies, double avg) {
printf("%s %zux%zu bytes took %.06f seconds (%f MB/s)\n",
name, copies, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
}
static inline void printSummary(uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, double running_avg, double std_dev, double min, double max) {
printf(" %s %zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
name, copies, size, running_avg/1024.0, std_dev/1024.0, min/1024.0,
max/1024.0);
}
// For the cold benchmarks, a large buffer will be created which
// contains many "size" buffers. This function will figure out the increment
// needed between each buffer so that each one is aligned to "alignment".
int getAlignmentIncrement(size_t size, int alignment) {
if (alignment == 0) {
alignment = DEFAULT_MALLOC_MEMORY_ALIGNMENT;
}
alignment *= 2;
return size + alignment - (size % alignment);
}
uint8_t *getColdBuffer(int num_buffers, size_t incr, int alignment, int or_mask) {
uint8_t *buffers = reinterpret_cast<uint8_t*>(malloc(num_buffers * incr + 3 * alignment));
if (!buffers) {
return NULL;
}
return getAlignedMemory(buffers, alignment, or_mask);
}
static inline double computeColdAverage(uint64_t time_ns, size_t size, size_t copies, size_t num_buffers) {
return ((size/1024.0) * copies * num_buffers) / ((double)time_ns/NS_PER_SEC);
}
static void inline printColdIter(uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers, double avg) {
printf("%s %zux%zux%zu bytes took %.06f seconds (%f MB/s)\n",
name, copies, num_buffers, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
}
static void inline printColdSummary(
uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, size_t num_buffers,
double running_avg, double square_avg, double min, double max) {
printf(" %s %zux%zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
name, copies, num_buffers, size, running_avg/1024.0,
computeStdDev(running_avg, square_avg)/1024.0, min/1024.0, max/1024.0);
}
#define MAINLOOP(cmd_data, BENCH, COMPUTE_AVG, PRINT_ITER, PRINT_AVG) \
uint64_t time_ns; \
int iters = cmd_data.args[1]; \
bool print_average = cmd_data.print_average; \
bool print_each_iter = cmd_data.print_each_iter; \
double min = 0.0, max = 0.0, running_avg = 0.0, square_avg = 0.0; \
double avg; \
for (int i = 0; iters == -1 || i < iters; i++) { \
time_ns = nanoTime(); \
BENCH; \
time_ns = nanoTime() - time_ns; \
avg = COMPUTE_AVG; \
if (print_average) { \
running_avg = computeRunningAvg(avg, running_avg, i); \
square_avg = computeRunningSquareAvg(avg, square_avg, i); \
if (min == 0.0 || avg < min) { \
min = avg; \
} \
if (avg > max) { \
max = avg; \
} \
} \
if (print_each_iter) { \
PRINT_ITER; \
} \
} \
if (print_average) { \
PRINT_AVG; \
}
#define MAINLOOP_DATA(name, cmd_data, size, BENCH) \
size_t copies = cmd_data.data_size/size; \
size_t j; \
MAINLOOP(cmd_data, \
for (j = 0; j < copies; j++) { \
BENCH; \
}, \
computeAverage(time_ns, size, copies), \
printIter(time_ns, name, size, copies, avg), \
double std_dev = computeStdDev(square_avg, running_avg); \
printSummary(time_ns, name, size, copies, running_avg, \
std_dev, min, max));
#define MAINLOOP_COLD(name, cmd_data, size, num_incrs, BENCH) \
size_t num_strides = num_buffers / num_incrs; \
if ((num_buffers % num_incrs) != 0) { \
num_strides--; \
} \
size_t copies = 1; \
num_buffers = num_incrs * num_strides; \
if (num_buffers * size < static_cast<size_t>(cmd_data.data_size)) { \
copies = cmd_data.data_size / (num_buffers * size); \
} \
if (num_strides == 0) { \
printf("%s: Chosen options lead to no copies, aborting.\n", name); \
return -1; \
} \
size_t j, k; \
MAINLOOP(cmd_data, \
for (j = 0; j < copies; j++) { \
for (k = 0; k < num_incrs; k++) { \
BENCH; \
} \
}, \
computeColdAverage(time_ns, size, copies, num_buffers), \
printColdIter(time_ns, name, size, copies, num_buffers, avg), \
printColdSummary(time_ns, name, size, copies, num_buffers, \
running_avg, square_avg, min, max));
// This version of the macro creates a single buffer of the given size and
// alignment. The variable "buf" will be a pointer to the buffer and should
// be used by the BENCH code.
// INIT - Any specialized code needed to initialize the data. This will only
// be executed once.
// BENCH - The actual code to benchmark and is timed.
#define BENCH_ONE_BUF(name, cmd_data, INIT, BENCH) \
size_t size = cmd_data.args[0]; \
uint8_t *buf = allocateAlignedMemory(size, cmd_data.dst_align, cmd_data.dst_or_mask); \
if (!buf) \
return -1; \
INIT; \
MAINLOOP_DATA(name, cmd_data, size, BENCH);
// This version of the macro creates two buffers of the given sizes and
// alignments. The variables "buf1" and "buf2" will be pointers to the
// buffers and should be used by the BENCH code.
// INIT - Any specialized code needed to initialize the data. This will only
// be executed once.
// BENCH - The actual code to benchmark and is timed.
#define BENCH_TWO_BUFS(name, cmd_data, INIT, BENCH) \
size_t size = cmd_data.args[0]; \
uint8_t *buf1 = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask); \
if (!buf1) \
return -1; \
size_t total_size = size; \
if (cmd_data.dst_str_size > 0) \
total_size += cmd_data.dst_str_size; \
uint8_t *buf2 = allocateAlignedMemory(total_size, cmd_data.dst_align, cmd_data.dst_or_mask); \
if (!buf2) \
return -1; \
INIT; \
MAINLOOP_DATA(name, cmd_data, size, BENCH);
// This version of the macro attempts to benchmark code when the data
// being manipulated is not in the cache, thus the cache is cold. It does
// this by creating a single large buffer that is designed to be larger than
// the largest cache in the system. The variable "buf" will be one slice
// of the buffer that the BENCH code should use that is of the correct size
// and alignment. In order to avoid any algorithms that prefetch past the end
// of their "buf" and into the next sequential buffer, the code strides
// through the buffer. Specifically, as "buf" values are iterated in BENCH
// code, the end of "buf" is guaranteed to be at least "stride_size" away
// from the next "buf".
// INIT - Any specialized code needed to initialize the data. This will only
// be executed once.
// BENCH - The actual code to benchmark and is timed.
#define COLD_ONE_BUF(name, cmd_data, INIT, BENCH) \
size_t size = cmd_data.args[0]; \
size_t incr = getAlignmentIncrement(size, cmd_data.dst_align); \
size_t num_buffers = cmd_data.cold_data_size / incr; \
size_t buffer_size = num_buffers * incr; \
uint8_t *buffer = getColdBuffer(num_buffers, incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
if (!buffer) \
return -1; \
size_t num_incrs = cmd_data.cold_stride_size / incr + 1; \
size_t stride_incr = incr * num_incrs; \
uint8_t *buf; \
size_t l; \
INIT; \
MAINLOOP_COLD(name, cmd_data, size, num_incrs, \
buf = buffer + k * incr; \
for (l = 0; l < num_strides; l++) { \
BENCH; \
buf += stride_incr; \
});
// This version of the macro attempts to benchmark code when the data
// being manipulated is not in the cache, thus the cache is cold. It does
// this by creating two large buffers each of which is designed to be
// larger than the largest cache in the system. Two variables "buf1" and
// "buf2" will be the two buffers that BENCH code should use. In order
// to avoid any algorithms that prefetch past the end of either "buf1"
// or "buf2" and into the next sequential buffer, the code strides through
// both buffers. Specifically, as "buf1" and "buf2" values are iterated in
// BENCH code, the end of "buf1" and "buf2" is guaranteed to be at least
// "stride_size" away from the next "buf1" and "buf2".
// INIT - Any specialized code needed to initialize the data. This will only
// be executed once.
// BENCH - The actual code to benchmark and is timed.
#define COLD_TWO_BUFS(name, cmd_data, INIT, BENCH) \
size_t size = cmd_data.args[0]; \
size_t buf1_incr = getAlignmentIncrement(size, cmd_data.src_align); \
size_t total_size = size; \
if (cmd_data.dst_str_size > 0) \
total_size += cmd_data.dst_str_size; \
size_t buf2_incr = getAlignmentIncrement(total_size, cmd_data.dst_align); \
size_t max_incr = (buf1_incr > buf2_incr) ? buf1_incr : buf2_incr; \
size_t num_buffers = cmd_data.cold_data_size / max_incr; \
size_t buffer1_size = num_buffers * buf1_incr; \
size_t buffer2_size = num_buffers * buf2_incr; \
uint8_t *buffer1 = getColdBuffer(num_buffers, buf1_incr, cmd_data.src_align, cmd_data.src_or_mask); \
if (!buffer1) \
return -1; \
uint8_t *buffer2 = getColdBuffer(num_buffers, buf2_incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
if (!buffer2) \
return -1; \
size_t min_incr = (buf1_incr < buf2_incr) ? buf1_incr : buf2_incr; \
size_t num_incrs = cmd_data.cold_stride_size / min_incr + 1; \
size_t buf1_stride_incr = buf1_incr * num_incrs; \
size_t buf2_stride_incr = buf2_incr * num_incrs; \
size_t l; \
uint8_t *buf1; \
uint8_t *buf2; \
INIT; \
MAINLOOP_COLD(name, cmd_data, size, num_incrs, \
buf1 = buffer1 + k * buf1_incr; \
buf2 = buffer2 + k * buf2_incr; \
for (l = 0; l < num_strides; l++) { \
BENCH; \
buf1 += buf1_stride_incr; \
buf2 += buf2_stride_incr; \
});
int benchmarkSleep(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) {
int delay = cmd_data.args[0];
MAINLOOP(cmd_data, sleep(delay),
(double)time_ns/NS_PER_SEC,
printf("sleep(%d) took %.06f seconds\n", delay, avg);,
printf(" sleep(%d) average %.06f seconds std dev %f min %.06f seconds max %0.6f seconds\n", \
delay, running_avg, computeStdDev(square_avg, running_avg), \
min, max));
return 0;
}
int benchmarkMemset(const char *name, const command_data_t &cmd_data, void_func_t func) {
memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
BENCH_ONE_BUF(name, cmd_data, ;, memset_func(buf, i, size));
return 0;
}
int benchmarkMemsetCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
COLD_ONE_BUF(name, cmd_data, ;, memset_func(buf, l, size));
return 0;
}
int benchmarkMemcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
BENCH_TWO_BUFS(name, cmd_data,
memset(buf1, 0xff, size); \
memset(buf2, 0, size),
memcpy_func(buf2, buf1, size));
return 0;
}
int benchmarkMemcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
COLD_TWO_BUFS(name, cmd_data,
memset(buffer1, 0xff, buffer1_size); \
memset(buffer2, 0x0, buffer2_size),
memcpy_func(buf2, buf1, size));
return 0;
}
int benchmarkMemmoveBackwards(const char *name, const command_data_t &cmd_data, void_func_t func) {
memcpy_func_t memmove_func = reinterpret_cast<memcpy_func_t>(func);
size_t size = cmd_data.args[0];
size_t alloc_size = size * 2 + 3 * cmd_data.dst_align;
uint8_t* src = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask);
if (!src)
return -1;
// Force memmove to do a backwards copy by getting a pointer into the source buffer.
uint8_t* dst = getAlignedMemory(src+1, cmd_data.dst_align, cmd_data.dst_or_mask);
if (!dst)
return -1;
MAINLOOP_DATA(name, cmd_data, size, memmove_func(dst, src, size));
return 0;
}
int benchmarkMemread(const char *name, const command_data_t &cmd_data, void_func_t /*func*/) {
int size = cmd_data.args[0];
uint32_t *src = reinterpret_cast<uint32_t*>(malloc(size));
if (!src)
return -1;
memset(src, 0xff, size);
// Use volatile so the compiler does not optimize away the reads.
volatile int foo;
size_t k;
MAINLOOP_DATA(name, cmd_data, size,
for (k = 0; k < size/sizeof(uint32_t); k++) foo = src[k]);
free(src);
return 0;
}
int benchmarkStrcmp(const char *name, const command_data_t &cmd_data, void_func_t func) {
strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
int retval;
BENCH_TWO_BUFS(name, cmd_data,
initString(buf1, size); \
initString(buf2, size),
retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
if (retval != 0) printf("%s failed, return value %d\n", name, retval));
return 0;
}
int benchmarkStrcmpCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
int retval;
COLD_TWO_BUFS(name, cmd_data,
memset(buffer1, 'a', buffer1_size); \
memset(buffer2, 'a', buffer2_size); \
for (size_t i =0; i < num_buffers; i++) { \
buffer1[size-1+buf1_incr*i] = '\0'; \
buffer2[size-1+buf2_incr*i] = '\0'; \
},
retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
if (retval != 0) printf("%s failed, return value %d\n", name, retval));
return 0;
}
int benchmarkStrlen(const char *name, const command_data_t &cmd_data, void_func_t func) {
size_t real_size;
strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
BENCH_ONE_BUF(name, cmd_data,
initString(buf, size),
real_size = strlen_func(reinterpret_cast<char*>(buf)); \
if (real_size + 1 != size) { \
printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
return -1; \
});
return 0;
}
int benchmarkStrlenCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
size_t real_size;
COLD_ONE_BUF(name, cmd_data,
memset(buffer, 'a', buffer_size); \
for (size_t i = 0; i < num_buffers; i++) { \
buffer[size-1+incr*i] = '\0'; \
},
real_size = strlen_func(reinterpret_cast<char*>(buf)); \
if (real_size + 1 != size) { \
printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
return -1; \
});
return 0;
}
int benchmarkStrcat(const char *name, const command_data_t &cmd_data, void_func_t func) {
str_func_t str_func = reinterpret_cast<str_func_t>(func);
int dst_str_size = cmd_data.dst_str_size;
if (dst_str_size <= 0) {
printf("%s requires --dst_str_size to be set to a non-zero value.\n",
name);
return -1;
}
BENCH_TWO_BUFS(name, cmd_data,
initString(buf1, size); \
initString(buf2, dst_str_size),
str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
return 0;
}
int benchmarkStrcatCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
str_func_t str_func = reinterpret_cast<str_func_t>(func);
int dst_str_size = cmd_data.dst_str_size;
if (dst_str_size <= 0) {
printf("%s requires --dst_str_size to be set to a non-zero value.\n",
name);
return -1;
}
COLD_TWO_BUFS(name, cmd_data,
memset(buffer1, 'a', buffer1_size); \
memset(buffer2, 'b', buffer2_size); \
for (size_t i = 0; i < num_buffers; i++) { \
buffer1[size-1+buf1_incr*i] = '\0'; \
buffer2[dst_str_size-1+buf2_incr*i] = '\0'; \
},
str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
return 0;
}
int benchmarkStrcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
str_func_t str_func = reinterpret_cast<str_func_t>(func);
BENCH_TWO_BUFS(name, cmd_data,
initString(buf1, size); \
memset(buf2, 0, size),
str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
return 0;
}
int benchmarkStrcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
str_func_t str_func = reinterpret_cast<str_func_t>(func);
COLD_TWO_BUFS(name, cmd_data,
memset(buffer1, 'a', buffer1_size); \
for (size_t i = 0; i < num_buffers; i++) { \
buffer1[size-1+buf1_incr*i] = '\0'; \
} \
memset(buffer2, 0, buffer2_size),
str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
return 0;
}
// Create the mapping structure.
function_t function_table[] = {
{ "memcpy", benchmarkMemcpy, reinterpret_cast<void_func_t>(memcpy) },
{ "memcpy_cold", benchmarkMemcpyCold, reinterpret_cast<void_func_t>(memcpy) },
{ "memmove_forward", benchmarkMemcpy, reinterpret_cast<void_func_t>(memmove) },
{ "memmove_backward", benchmarkMemmoveBackwards, reinterpret_cast<void_func_t>(memmove) },
{ "memread", benchmarkMemread, NULL },
{ "memset", benchmarkMemset, reinterpret_cast<void_func_t>(memset) },
{ "memset_cold", benchmarkMemsetCold, reinterpret_cast<void_func_t>(memset) },
{ "sleep", benchmarkSleep, NULL },
{ "strcat", benchmarkStrcat, reinterpret_cast<void_func_t>(strcat) },
{ "strcat_cold", benchmarkStrcatCold, reinterpret_cast<void_func_t>(strcat) },
{ "strcmp", benchmarkStrcmp, reinterpret_cast<void_func_t>(strcmp) },
{ "strcmp_cold", benchmarkStrcmpCold, reinterpret_cast<void_func_t>(strcmp) },
{ "strcpy", benchmarkStrcpy, reinterpret_cast<void_func_t>(strcpy) },
{ "strcpy_cold", benchmarkStrcpyCold, reinterpret_cast<void_func_t>(strcpy) },
{ "strlen", benchmarkStrlen, reinterpret_cast<void_func_t>(strlen) },
{ "strlen_cold", benchmarkStrlenCold, reinterpret_cast<void_func_t>(strlen) },
};
void usage() {
printf("Usage:\n");
printf(" micro_bench [--data_size DATA_BYTES] [--print_average]\n");
printf(" [--no_print_each_iter] [--lock_to_cpu CORE]\n");
printf(" [--src_align ALIGN] [--src_or_mask OR_MASK]\n");
printf(" [--dst_align ALIGN] [--dst_or_mask OR_MASK]\n");
printf(" [--dst_str_size SIZE] [--cold_data_size DATA_BYTES]\n");
printf(" [--cold_stride_size SIZE]\n");
printf(" --data_size DATA_BYTES\n");
printf(" For the data benchmarks (memcpy/memset/memread) the approximate\n");
printf(" size of data, in bytes, that will be manipulated in each iteration.\n");
printf(" --print_average\n");
printf(" Print the average and standard deviation of all iterations.\n");
printf(" --no_print_each_iter\n");
printf(" Do not print any values in each iteration.\n");
printf(" --lock_to_cpu CORE\n");
printf(" Lock to the specified CORE. The default is to use the last core found.\n");
printf(" --dst_align ALIGN\n");
printf(" If the command supports it, align the destination pointer to ALIGN.\n");
printf(" The default is to use the value returned by malloc.\n");
printf(" --dst_or_mask OR_MASK\n");
printf(" If the command supports it, or in the OR_MASK on to the destination pointer.\n");
printf(" The OR_MASK must be smaller than the dst_align value.\n");
printf(" The default value is 0.\n");
printf(" --src_align ALIGN\n");
printf(" If the command supports it, align the source pointer to ALIGN. The default is to use the\n");
printf(" value returned by malloc.\n");
printf(" --src_or_mask OR_MASK\n");
printf(" If the command supports it, or in the OR_MASK on to the source pointer.\n");
printf(" The OR_MASK must be smaller than the src_align value.\n");
printf(" The default value is 0.\n");
printf(" --dst_str_size SIZE\n");
printf(" If the command supports it, create a destination string of this length.\n");
printf(" The default is to not update the destination string.\n");
printf(" --cold_data_size DATA_SIZE\n");
printf(" For _cold benchmarks, use this as the total amount of memory to use.\n");
printf(" The default is 128MB, and the number should be larger than the cache on the chip.\n");
printf(" This value is specified in bytes.\n");
printf(" --cold_stride_size SIZE\n");
printf(" For _cold benchmarks, use this as the minimum stride between iterations.\n");
printf(" The default is 4096 bytes and the number should be larger than the amount of data\n");
printf(" pulled in to the cache by each run of the benchmark.\n");
printf(" ITERS\n");
printf(" The number of iterations to execute each benchmark. If not\n");
printf(" passed in then run forever.\n");
printf(" micro_bench cpu UNUSED [ITERS]\n");
printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memcpy NUM_BYTES [ITERS]\n");
printf(" micro_bench memread NUM_BYTES [ITERS]\n");
printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memset NUM_BYTES [ITERS]\n");
printf(" micro_bench sleep TIME_TO_SLEEP [ITERS]\n");
printf(" TIME_TO_SLEEP\n");
printf(" The time in seconds to sleep.\n");
printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] [--dst_str_size SIZE] strcat NUM_BYTES [ITERS]\n");
printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask OR_MASK] strcmp NUM_BYTES [ITERS]\n");
printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] strcpy NUM_BYTES [ITERS]\n");
printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] strlen NUM_BYTES [ITERS]\n");
printf("\n");
printf(" In addition, memcpy/memcpy/memset/strcat/strcpy/strlen have _cold versions\n");
printf(" that will execute the function on a buffer not in the cache.\n");
}
function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) {
function_t *command = NULL;
// Initialize the command_flags.
cmd_data->print_average = false;
cmd_data->print_each_iter = true;
cmd_data->dst_align = 0;
cmd_data->src_align = 0;
cmd_data->src_or_mask = 0;
cmd_data->dst_or_mask = 0;
cmd_data->num_args = 0;
cmd_data->cpu_to_lock = -1;
cmd_data->data_size = DEFAULT_DATA_SIZE;
cmd_data->dst_str_size = -1;
cmd_data->cold_data_size = DEFAULT_COLD_DATA_SIZE;
cmd_data->cold_stride_size = DEFAULT_COLD_STRIDE_SIZE;
for (int i = 0; i < MAX_ARGS; i++) {
cmd_data->args[i] = -1;
}
for (int i = 1; i < argc; i++) {
if (argv[i][0] == '-') {
int *save_value = NULL;
if (strcmp(argv[i], "--print_average") == 0) {
cmd_data->print_average = true;
} else if (strcmp(argv[i], "--no_print_each_iter") == 0) {
cmd_data->print_each_iter = false;
} else if (strcmp(argv[i], "--dst_align") == 0) {
save_value = &cmd_data->dst_align;
} else if (strcmp(argv[i], "--src_align") == 0) {
save_value = &cmd_data->src_align;
} else if (strcmp(argv[i], "--dst_or_mask") == 0) {
save_value = &cmd_data->dst_or_mask;
} else if (strcmp(argv[i], "--src_or_mask") == 0) {
save_value = &cmd_data->src_or_mask;
} else if (strcmp(argv[i], "--lock_to_cpu") == 0) {
save_value = &cmd_data->cpu_to_lock;
} else if (strcmp(argv[i], "--data_size") == 0) {
save_value = &cmd_data->data_size;
} else if (strcmp(argv[i], "--dst_str_size") == 0) {
save_value = &cmd_data->dst_str_size;
} else if (strcmp(argv[i], "--cold_data_size") == 0) {
save_value = &cmd_data->cold_data_size;
} else if (strcmp(argv[i], "--cold_stride_size") == 0) {
save_value = &cmd_data->cold_stride_size;
} else {
printf("Unknown option %s\n", argv[i]);
return NULL;
}
if (save_value) {
// Checking both characters without a strlen() call should be
// safe since as long as the argument exists, one character will
// be present (\0). And if the first character is '-', then
// there will always be a second character (\0 again).
if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) {
printf("The option %s requires one argument.\n",
argv[i]);
return NULL;
}
*save_value = (int)strtol(argv[++i], NULL, 0);
}
} else if (!command) {
for (size_t j = 0; j < sizeof(function_table)/sizeof(function_t); j++) {
if (strcmp(argv[i], function_table[j].name) == 0) {
command = &function_table[j];
break;
}
}
if (!command) {
printf("Uknown command %s\n", argv[i]);
return NULL;
}
} else if (cmd_data->num_args > MAX_ARGS) {
printf("More than %d number arguments passed in.\n", MAX_ARGS);
return NULL;
} else {
cmd_data->args[cmd_data->num_args++] = atoi(argv[i]);
}
}
// Check the arguments passed in make sense.
if (cmd_data->num_args != 1 && cmd_data->num_args != 2) {
printf("Not enough arguments passed in.\n");
return NULL;
} else if (cmd_data->dst_align < 0) {
printf("The --dst_align option must be greater than or equal to 0.\n");
return NULL;
} else if (cmd_data->src_align < 0) {
printf("The --src_align option must be greater than or equal to 0.\n");
return NULL;
} else if (cmd_data->data_size <= 0) {
printf("The --data_size option must be a positive number.\n");
return NULL;
} else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) {
printf("The --dst_align option must be a power of 2.\n");
return NULL;
} else if ((cmd_data->src_align & (cmd_data->src_align - 1))) {
printf("The --src_align option must be a power of 2.\n");
return NULL;
} else if (!cmd_data->src_align && cmd_data->src_or_mask) {
printf("The --src_or_mask option requires that --src_align be set.\n");
return NULL;
} else if (!cmd_data->dst_align && cmd_data->dst_or_mask) {
printf("The --dst_or_mask option requires that --dst_align be set.\n");
return NULL;
} else if (cmd_data->src_or_mask > cmd_data->src_align) {
printf("The value of --src_or_mask cannot be larger that --src_align.\n");
return NULL;
} else if (cmd_data->dst_or_mask > cmd_data->dst_align) {
printf("The value of --src_or_mask cannot be larger that --src_align.\n");
return NULL;
}
return command;
}
bool raisePriorityAndLock(int cpu_to_lock) {
cpu_set_t cpuset;
if (setpriority(PRIO_PROCESS, 0, -20)) {
perror("Unable to raise priority of process.\n");
return false;
}
CPU_ZERO(&cpuset);
if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) {
perror("sched_getaffinity failed");
return false;
}
if (cpu_to_lock < 0) {
// Lock to the last active core we find.
for (int i = 0; i < CPU_SETSIZE; i++) {
if (CPU_ISSET(i, &cpuset)) {
cpu_to_lock = i;
}
}
} else if (!CPU_ISSET(cpu_to_lock, &cpuset)) {
printf("Cpu %d does not exist.\n", cpu_to_lock);
return false;
}
if (cpu_to_lock < 0) {
printf("Cannot find any valid cpu to lock.\n");
return false;
}
CPU_ZERO(&cpuset);
CPU_SET(cpu_to_lock, &cpuset);
if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) {
perror("sched_setaffinity failed");
return false;
}
return true;
}
int main(int argc, char **argv) {
command_data_t cmd_data;
function_t *command = processOptions(argc, argv, &cmd_data);
if (!command) {
usage();
return -1;
}
if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) {
return -1;
}
printf("%s\n", command->name);
return (*command->ptr)(command->name, cmd_data, command->func);
}
|