1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <chrono>
#include <set>
#include <string>
#include <vector>
#include <android-base/logging.h>
#include <android-base/strings.h>
#include "command.h"
#include "environment.h"
#include "event_attr.h"
#include "event_fd.h"
#include "event_selection_set.h"
#include "event_type.h"
#include "scoped_signal_handler.h"
#include "utils.h"
#include "workload.h"
static std::vector<std::string> default_measured_event_types{
"cpu-cycles", "stalled-cycles-frontend", "stalled-cycles-backend",
"instructions", "branch-instructions", "branch-misses",
"task-clock", "context-switches", "page-faults",
};
static volatile bool signaled;
static void signal_handler(int) {
signaled = true;
}
class StatCommand : public Command {
public:
StatCommand()
: Command("stat", "gather performance counter information",
"Usage: simpleperf stat [options] [command [command-args]]\n"
" Gather performance counter information of running [command].\n"
" -a Collect system-wide information.\n"
" --cpu cpu_item1,cpu_item2,...\n"
" Collect information only on the selected cpus. cpu_item can\n"
" be a cpu number like 1, or a cpu range like 0-3.\n"
" -e event1[:modifier1],event2[:modifier2],...\n"
" Select the event list to count. Use `simpleperf list` to find\n"
" all possible event names. Modifiers can be added to define\n"
" how the event should be monitored. Possible modifiers are:\n"
" u - monitor user space events only\n"
" k - monitor kernel space events only\n"
" --no-inherit\n"
" Don't stat created child threads/processes.\n"
" -p pid1,pid2,...\n"
" Stat events on existing processes. Mutually exclusive with -a.\n"
" -t tid1,tid2,...\n"
" Stat events on existing threads. Mutually exclusive with -a.\n"
" --verbose Show result in verbose mode.\n"),
verbose_mode_(false),
system_wide_collection_(false),
child_inherit_(true) {
signaled = false;
scoped_signal_handler_.reset(
new ScopedSignalHandler({SIGCHLD, SIGINT, SIGTERM}, signal_handler));
}
bool Run(const std::vector<std::string>& args);
private:
bool ParseOptions(const std::vector<std::string>& args, std::vector<std::string>* non_option_args);
bool AddMeasuredEventType(const std::string& event_type_name);
bool AddDefaultMeasuredEventTypes();
bool SetEventSelection();
bool ShowCounters(const std::vector<CountersInfo>& counters, double duration_in_sec);
bool verbose_mode_;
bool system_wide_collection_;
bool child_inherit_;
std::vector<pid_t> monitored_threads_;
std::vector<int> cpus_;
std::vector<EventTypeAndModifier> measured_event_types_;
EventSelectionSet event_selection_set_;
std::unique_ptr<ScopedSignalHandler> scoped_signal_handler_;
};
bool StatCommand::Run(const std::vector<std::string>& args) {
if (!CheckPerfEventLimit()) {
return false;
}
// 1. Parse options, and use default measured event types if not given.
std::vector<std::string> workload_args;
if (!ParseOptions(args, &workload_args)) {
return false;
}
if (measured_event_types_.empty()) {
if (!AddDefaultMeasuredEventTypes()) {
return false;
}
}
if (!SetEventSelection()) {
return false;
}
// 2. Create workload.
std::unique_ptr<Workload> workload;
if (!workload_args.empty()) {
workload = Workload::CreateWorkload(workload_args);
if (workload == nullptr) {
return false;
}
}
if (!system_wide_collection_ && monitored_threads_.empty()) {
if (workload != nullptr) {
monitored_threads_.push_back(workload->GetPid());
event_selection_set_.SetEnableOnExec(true);
} else {
LOG(ERROR) << "No threads to monitor. Try `simpleperf help stat` for help\n";
return false;
}
}
// 3. Open perf_event_files.
if (system_wide_collection_) {
if (!event_selection_set_.OpenEventFilesForCpus(cpus_)) {
return false;
}
} else {
if (!event_selection_set_.OpenEventFilesForThreadsOnCpus(monitored_threads_, cpus_)) {
return false;
}
}
// 4. Count events while workload running.
auto start_time = std::chrono::steady_clock::now();
if (workload != nullptr && !workload->Start()) {
return false;
}
while (!signaled) {
sleep(1);
}
auto end_time = std::chrono::steady_clock::now();
// 5. Read and print counters.
std::vector<CountersInfo> counters;
if (!event_selection_set_.ReadCounters(&counters)) {
return false;
}
double duration_in_sec =
std::chrono::duration_cast<std::chrono::duration<double>>(end_time - start_time).count();
if (!ShowCounters(counters, duration_in_sec)) {
return false;
}
return true;
}
bool StatCommand::ParseOptions(const std::vector<std::string>& args,
std::vector<std::string>* non_option_args) {
std::set<pid_t> tid_set;
size_t i;
for (i = 0; i < args.size() && args[i].size() > 0 && args[i][0] == '-'; ++i) {
if (args[i] == "-a") {
system_wide_collection_ = true;
} else if (args[i] == "--cpu") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
cpus_ = GetCpusFromString(args[i]);
} else if (args[i] == "-e") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::vector<std::string> event_types = android::base::Split(args[i], ",");
for (auto& event_type : event_types) {
if (!AddMeasuredEventType(event_type)) {
return false;
}
}
} else if (args[i] == "--no-inherit") {
child_inherit_ = false;
} else if (args[i] == "-p") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
if (!GetValidThreadsFromProcessString(args[i], &tid_set)) {
return false;
}
} else if (args[i] == "-t") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
if (!GetValidThreadsFromThreadString(args[i], &tid_set)) {
return false;
}
} else if (args[i] == "--verbose") {
verbose_mode_ = true;
} else {
ReportUnknownOption(args, i);
return false;
}
}
monitored_threads_.insert(monitored_threads_.end(), tid_set.begin(), tid_set.end());
if (system_wide_collection_ && !monitored_threads_.empty()) {
LOG(ERROR) << "Stat system wide and existing processes/threads can't be used at the same time.";
return false;
}
if (non_option_args != nullptr) {
non_option_args->clear();
for (; i < args.size(); ++i) {
non_option_args->push_back(args[i]);
}
}
return true;
}
bool StatCommand::AddMeasuredEventType(const std::string& event_type_name) {
std::unique_ptr<EventTypeAndModifier> event_type_modifier = ParseEventType(event_type_name);
if (event_type_modifier == nullptr) {
return false;
}
measured_event_types_.push_back(*event_type_modifier);
return true;
}
bool StatCommand::AddDefaultMeasuredEventTypes() {
for (auto& name : default_measured_event_types) {
// It is not an error when some event types in the default list are not supported by the kernel.
const EventType* type = FindEventTypeByName(name);
if (type != nullptr && IsEventAttrSupportedByKernel(CreateDefaultPerfEventAttr(*type))) {
AddMeasuredEventType(name);
}
}
if (measured_event_types_.empty()) {
LOG(ERROR) << "Failed to add any supported default measured types";
return false;
}
return true;
}
bool StatCommand::SetEventSelection() {
for (auto& event_type : measured_event_types_) {
if (!event_selection_set_.AddEventType(event_type)) {
return false;
}
}
event_selection_set_.SetInherit(child_inherit_);
return true;
}
static std::string ReadableCountValue(uint64_t count,
const EventTypeAndModifier& event_type_modifier) {
if (event_type_modifier.event_type.name == "cpu-clock" ||
event_type_modifier.event_type.name == "task-clock") {
double value = count / 1e6;
return android::base::StringPrintf("%lf(ms)", value);
} else {
std::string s = android::base::StringPrintf("%" PRIu64, count);
for (size_t i = s.size() - 1, j = 1; i > 0; --i, ++j) {
if (j == 3) {
s.insert(s.begin() + i, ',');
j = 0;
}
}
return s;
}
}
struct CounterSummary {
const EventTypeAndModifier* event_type;
uint64_t count;
double scale;
std::string readable_count_str;
std::string comment;
};
static std::string GetCommentForSummary(const CounterSummary& summary,
const std::vector<CounterSummary>& summaries,
double duration_in_sec) {
const std::string& type_name = summary.event_type->event_type.name;
const std::string& modifier = summary.event_type->modifier;
if (type_name == "task-clock") {
double run_sec = summary.count / 1e9;
double cpu_usage = run_sec / duration_in_sec;
return android::base::StringPrintf("%lf%% cpu usage", cpu_usage * 100);
}
if (type_name == "cpu-clock") {
return "";
}
if (type_name == "cpu-cycles") {
double hz = summary.count / duration_in_sec;
return android::base::StringPrintf("%lf GHz", hz / 1e9);
}
if (type_name == "instructions" && summary.count != 0) {
for (auto& t : summaries) {
if (t.event_type->event_type.name == "cpu-cycles" && t.event_type->modifier == modifier) {
double cycles_per_instruction = t.count * 1.0 / summary.count;
return android::base::StringPrintf("%lf cycles per instruction", cycles_per_instruction);
}
}
}
if (android::base::EndsWith(type_name, "-misses")) {
std::string s;
if (type_name == "cache-misses") {
s = "cache-references";
} else if (type_name == "branch-misses") {
s = "branch-instructions";
} else {
s = type_name.substr(0, type_name.size() - strlen("-misses")) + "s";
}
for (auto& t : summaries) {
if (t.event_type->event_type.name == s && t.event_type->modifier == modifier && t.count != 0) {
double miss_rate = summary.count * 1.0 / t.count;
return android::base::StringPrintf("%lf%% miss rate", miss_rate * 100);
}
}
}
double rate = summary.count / duration_in_sec;
if (rate > 1e9) {
return android::base::StringPrintf("%.3lf G/sec", rate / 1e9);
}
if (rate > 1e6) {
return android::base::StringPrintf("%.3lf M/sec", rate / 1e6);
}
if (rate > 1e3) {
return android::base::StringPrintf("%.3lf K/sec", rate / 1e3);
}
return android::base::StringPrintf("%.3lf /sec", rate);
}
bool StatCommand::ShowCounters(const std::vector<CountersInfo>& counters, double duration_in_sec) {
printf("Performance counter statistics:\n\n");
if (verbose_mode_) {
for (auto& counters_info : counters) {
const EventTypeAndModifier* event_type = counters_info.event_type;
for (auto& counter_info : counters_info.counters) {
printf("%s(tid %d, cpu %d): count %s, time_enabled %" PRIu64 ", time running %" PRIu64
", id %" PRIu64 "\n",
event_type->name.c_str(), counter_info.tid, counter_info.cpu,
ReadableCountValue(counter_info.counter.value, *event_type).c_str(),
counter_info.counter.time_enabled, counter_info.counter.time_running,
counter_info.counter.id);
}
}
}
std::vector<CounterSummary> summaries;
for (auto& counters_info : counters) {
uint64_t value_sum = 0;
uint64_t time_enabled_sum = 0;
uint64_t time_running_sum = 0;
for (auto& counter_info : counters_info.counters) {
value_sum += counter_info.counter.value;
time_enabled_sum += counter_info.counter.time_enabled;
time_running_sum += counter_info.counter.time_running;
}
double scale = 1.0;
uint64_t scaled_count = value_sum;
if (time_running_sum < time_enabled_sum) {
if (time_running_sum == 0) {
scaled_count = 0;
} else {
scale = static_cast<double>(time_enabled_sum) / time_running_sum;
scaled_count = static_cast<uint64_t>(scale * value_sum);
}
}
CounterSummary summary;
summary.event_type = counters_info.event_type;
summary.count = scaled_count;
summary.scale = scale;
summary.readable_count_str = ReadableCountValue(summary.count, *summary.event_type);
summaries.push_back(summary);
}
for (auto& summary : summaries) {
summary.comment = GetCommentForSummary(summary, summaries, duration_in_sec);
}
size_t count_column_width = 0;
size_t name_column_width = 0;
size_t comment_column_width = 0;
for (auto& summary : summaries) {
count_column_width = std::max(count_column_width, summary.readable_count_str.size());
name_column_width = std::max(name_column_width, summary.event_type->name.size());
comment_column_width = std::max(comment_column_width, summary.comment.size());
}
for (auto& summary : summaries) {
printf(" %*s %-*s # %-*s (%.0lf%%)\n", static_cast<int>(count_column_width),
summary.readable_count_str.c_str(), static_cast<int>(name_column_width),
summary.event_type->name.c_str(), static_cast<int>(comment_column_width),
summary.comment.c_str(), 1.0 / summary.scale * 100);
}
printf("\nTotal test time: %lf seconds.\n", duration_in_sec);
return true;
}
void RegisterStatCommand() {
RegisterCommand("stat", [] { return std::unique_ptr<Command>(new StatCommand); });
}
|