1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
#include <sched.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/mman.h>
#ifdef __ARM_NEON__
#include <arm_neon.h>
#endif
typedef long long nsecs_t;
static nsecs_t gTime;
float data_f[1024 * 128];
static nsecs_t system_time()
{
struct timespec t;
t.tv_sec = t.tv_nsec = 0;
clock_gettime(CLOCK_MONOTONIC, &t);
return nsecs_t(t.tv_sec)*1000000000LL + t.tv_nsec;
}
static void startTime()
{
gTime = system_time();
}
static void endTime(const char *str, double ops)
{
nsecs_t t = system_time() - gTime;
double ds = ((double)t) / 1e9;
printf("Test: %s, %f Mops\n", str, ops / ds / 1e6);
}
static void test_mad() {
for(int i=0; i<1020; i++) {
data_f[i] = i;
}
startTime();
// Do ~1 billion ops
for (int ct=0; ct < (1000 * (1000 / 20)); ct++) {
for (int i=0; i < 1000; i++) {
data_f[i] = (data_f[i] * 0.02f +
data_f[i+1] * 0.04f +
data_f[i+2] * 0.05f +
data_f[i+3] * 0.1f +
data_f[i+4] * 0.2f +
data_f[i+5] * 0.2f +
data_f[i+6] * 0.1f +
data_f[i+7] * 0.05f +
data_f[i+8] * 0.04f +
data_f[i+9] * 0.02f + 1.f);
}
}
endTime("scalar mad", 1e9);
}
#ifdef __ARM_NEON__
static void test_fma() {
for(int i=0; i<1020 * 4; i++) {
data_f[i] = i;
}
float32x4_t c0_02 = vdupq_n_f32(0.02f);
float32x4_t c0_04 = vdupq_n_f32(0.04f);
float32x4_t c0_05 = vdupq_n_f32(0.05f);
float32x4_t c0_10 = vdupq_n_f32(0.1f);
float32x4_t c0_20 = vdupq_n_f32(0.2f);
float32x4_t c1_00 = vdupq_n_f32(1.0f);
startTime();
// Do ~1 billion ops
for (int ct=0; ct < (1000 * (1000 / 80)); ct++) {
for (int i=0; i < 1000; i++) {
float32x4_t t;
t = vmulq_f32(vld1q_f32((float32_t *)&data_f[i]), c0_02);
t = vmlaq_f32(t, vld1q_f32((float32_t *)&data_f[i+4]), c0_04);
t = vmlaq_f32(t, vld1q_f32((float32_t *)&data_f[i+8]), c0_05);
t = vmlaq_f32(t, vld1q_f32((float32_t *)&data_f[i+12]), c0_10);
t = vmlaq_f32(t, vld1q_f32((float32_t *)&data_f[i+16]), c0_20);
t = vmlaq_f32(t, vld1q_f32((float32_t *)&data_f[i+20]), c0_20);
t = vmlaq_f32(t, vld1q_f32((float32_t *)&data_f[i+24]), c0_10);
t = vmlaq_f32(t, vld1q_f32((float32_t *)&data_f[i+28]), c0_05);
t = vmlaq_f32(t, vld1q_f32((float32_t *)&data_f[i+32]), c0_04);
t = vmlaq_f32(t, vld1q_f32((float32_t *)&data_f[i+36]), c0_02);
t = vaddq_f32(t, c1_00);
vst1q_f32((float32_t *)&data_f[i], t);
}
}
endTime("neon fma", 1e9);
}
#endif
int fp_test(int, char**) {
test_mad();
#ifdef __ARM_NEON__
test_fma();
#endif
return 0;
}
|