1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
#include "perf_data_converter.h"
#include "quipper/perf_parser.h"
#include <map>
using std::map;
namespace wireless_android_logging_awp {
typedef quipper::ParsedEvent::DSOAndOffset DSOAndOffset;
typedef std::vector<DSOAndOffset> callchain;
struct callchain_lt {
bool operator()(const callchain *c1, const callchain *c2) const {
if (c1->size() != c2->size()) {
return c1->size() < c2->size();
}
for (unsigned idx = 0; idx < c1->size(); ++idx) {
const DSOAndOffset *do1 = &(*c1)[idx];
const DSOAndOffset *do2 = &(*c2)[idx];
if (do1->offset() != do2->offset()) {
return do1->offset() < do2->offset();
}
int rc = do1->dso_name().compare(do2->dso_name());
if (rc) {
return rc < 0;
}
}
return false;
}
};
struct RangeTarget {
RangeTarget(uint64 start, uint64 end, uint64 to)
: start(start), end(end), to(to) {}
bool operator<(const RangeTarget &r) const {
if (start != r.start) {
return start < r.start;
} else if (end != r.end) {
return end < r.end;
} else {
return to < r.to;
}
}
uint64 start;
uint64 end;
uint64 to;
};
struct BinaryProfile {
map<uint64, uint64> address_count_map;
map<RangeTarget, uint64> range_count_map;
map<const callchain *, uint64, callchain_lt> callchain_count_map;
};
wireless_android_play_playlog::AndroidPerfProfile
RawPerfDataToAndroidPerfProfile(const string &perf_file) {
wireless_android_play_playlog::AndroidPerfProfile ret;
quipper::PerfParser parser;
if (!parser.ReadFile(perf_file) || !parser.ParseRawEvents()) {
return ret;
}
typedef map<string, BinaryProfile> ModuleProfileMap;
typedef map<string, ModuleProfileMap> ProgramProfileMap;
// Note: the callchain_count_map member in BinaryProfile contains
// pointers into callchains owned by "parser" above, meaning
// that once the parser is destroyed, callchain pointers in
// name_profile_map will become stale (e.g. keep these two
// together in the same region).
ProgramProfileMap name_profile_map;
uint64 total_samples = 0;
bool seen_branch_stack = false;
bool seen_callchain = false;
for (const auto &event : parser.parsed_events()) {
if (!event.raw_event ||
event.raw_event->header.type != PERF_RECORD_SAMPLE) {
continue;
}
string dso_name = event.dso_and_offset.dso_name();
string program_name = event.command();
const string kernel_name = "[kernel.kallsyms]";
if (dso_name.substr(0, kernel_name.length()) == kernel_name) {
dso_name = kernel_name;
if (program_name == "") {
program_name = "kernel";
}
} else if (program_name == "") {
program_name = "unknown_program";
}
total_samples++;
// We expect to see either all callchain events, all branch stack
// events, or all flat sample events, not a mix. For callchains,
// however, it can be the case that none of the IPs in a chain
// are mappable, in which case the parsed/mapped chain will appear
// empty (appearing as a flat sample).
if (!event.callchain.empty()) {
CHECK(!seen_branch_stack && "examining callchain");
seen_callchain = true;
const callchain *cc = &event.callchain;
name_profile_map[program_name][dso_name].callchain_count_map[cc]++;
} else if (!event.branch_stack.empty()) {
CHECK(!seen_callchain && "examining branch stack");
seen_branch_stack = true;
name_profile_map[program_name][dso_name].address_count_map[
event.dso_and_offset.offset()]++;
} else {
name_profile_map[program_name][dso_name].address_count_map[
event.dso_and_offset.offset()]++;
}
for (size_t i = 1; i < event.branch_stack.size(); i++) {
if (dso_name == event.branch_stack[i - 1].to.dso_name()) {
uint64 start = event.branch_stack[i].to.offset();
uint64 end = event.branch_stack[i - 1].from.offset();
uint64 to = event.branch_stack[i - 1].to.offset();
// The interval between two taken branches should not be too large.
if (end < start || end - start > (1 << 20)) {
LOG(WARNING) << "Bogus LBR data: " << start << "->" << end;
continue;
}
name_profile_map[program_name][dso_name].range_count_map[
RangeTarget(start, end, to)]++;
}
}
}
map<string, int> name_id_map;
for (const auto &program_profile : name_profile_map) {
for (const auto &module_profile : program_profile.second) {
name_id_map[module_profile.first] = 0;
}
}
int current_index = 0;
for (auto iter = name_id_map.begin(); iter != name_id_map.end(); ++iter) {
iter->second = current_index++;
}
map<string, string> name_buildid_map;
parser.GetFilenamesToBuildIDs(&name_buildid_map);
ret.set_total_samples(total_samples);
for (const auto &name_id : name_id_map) {
auto load_module = ret.add_load_modules();
load_module->set_name(name_id.first);
auto nbmi = name_buildid_map.find(name_id.first);
if (nbmi != name_buildid_map.end()) {
const std::string &build_id = nbmi->second;
if (build_id.size() == 40 && build_id.substr(32) == "00000000") {
load_module->set_build_id(build_id.substr(0, 32));
} else {
load_module->set_build_id(build_id);
}
}
}
for (const auto &program_profile : name_profile_map) {
auto program = ret.add_programs();
program->set_name(program_profile.first);
for (const auto &module_profile : program_profile.second) {
int32 module_id = name_id_map[module_profile.first];
auto module = program->add_modules();
module->set_load_module_id(module_id);
for (const auto &addr_count : module_profile.second.address_count_map) {
auto address_samples = module->add_address_samples();
address_samples->add_address(addr_count.first);
address_samples->set_count(addr_count.second);
}
for (const auto &range_count : module_profile.second.range_count_map) {
auto range_samples = module->add_range_samples();
range_samples->set_start(range_count.first.start);
range_samples->set_end(range_count.first.end);
range_samples->set_to(range_count.first.to);
range_samples->set_count(range_count.second);
}
for (const auto &callchain_count :
module_profile.second.callchain_count_map) {
auto address_samples = module->add_address_samples();
address_samples->set_count(callchain_count.second);
for (const auto &d_o : *callchain_count.first) {
int32 module_id = name_id_map[d_o.dso_name()];
address_samples->add_load_module_id(module_id);
address_samples->add_address(d_o.offset());
}
}
}
}
return ret;
}
} // namespace wireless_android_logging_awp
|