File: perf_parser.cc

package info (click to toggle)
android-platform-system-extras 8.1.0%2Br23-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 12,020 kB
  • sloc: cpp: 38,496; ansic: 16,188; python: 4,363; sh: 4,026; java: 584; xml: 367; asm: 169; makefile: 20
file content (584 lines) | stat: -rw-r--r-- 20,361 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
// Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "perf_parser.h"

#include <algorithm>
#include <cstdio>
#include <set>

#include "base/logging.h"

#include "address_mapper.h"
#include "quipper_string.h"
#include "perf_utils.h"

namespace quipper {

namespace {

struct EventAndTime {
  ParsedEvent* event;
  uint64_t time;
};

// Returns true if |e1| has an earlier timestamp than |e2|.  The args are const
// pointers instead of references because of the way this function is used when
// calling std::stable_sort.
bool CompareParsedEventTimes(const std::unique_ptr<EventAndTime>& e1,
                             const std::unique_ptr<EventAndTime>& e2) {
  return (e1->time < e2->time);
}

// Kernel MMAP entry pid appears as -1
const uint32_t kKernelPid = UINT32_MAX;

// Name and ID of the kernel swapper process.
const char kSwapperCommandName[] = "swapper";
const uint32_t kSwapperPid = 0;

bool IsNullBranchStackEntry(const struct branch_entry& entry) {
  return (!entry.from && !entry.to);
}

}  // namespace

PerfParser::PerfParser()
    : kernel_mapper_(new AddressMapper)
{}

PerfParser::~PerfParser() {}

PerfParser::PerfParser(const PerfParser::Options& options) {
  options_ = options;
}

void PerfParser::set_options(const PerfParser::Options& options) {
  options_ = options;
}

bool PerfParser::ParseRawEvents() {
  process_mappers_.clear();
  parsed_events_.resize(events_.size());
  for (size_t i = 0; i < events_.size(); ++i) {
    ParsedEvent& parsed_event = parsed_events_[i];
    parsed_event.raw_event = events_[i].get();
  }
  MaybeSortParsedEvents();
  if (!ProcessEvents()) {
    return false;
  }

  if (!options_.discard_unused_events)
    return true;

  // Some MMAP/MMAP2 events' mapped regions will not have any samples. These
  // MMAP/MMAP2 events should be dropped. |parsed_events_| should be
  // reconstructed without these events.
  size_t write_index = 0;
  size_t read_index;
  for (read_index = 0; read_index < parsed_events_.size(); ++read_index) {
    const ParsedEvent& event = parsed_events_[read_index];
    if ((event.raw_event->header.type == PERF_RECORD_MMAP ||
         event.raw_event->header.type == PERF_RECORD_MMAP2) &&
        event.num_samples_in_mmap_region == 0) {
      continue;
    }
    if (read_index != write_index)
      parsed_events_[write_index] = event;
    ++write_index;
  }
  CHECK_LE(write_index, parsed_events_.size());
  parsed_events_.resize(write_index);

  // Now regenerate the sorted event list again.  These are pointers to events
  // so they must be regenerated after a resize() of the ParsedEvent vector.
  MaybeSortParsedEvents();

  return true;
}

void PerfParser::MaybeSortParsedEvents() {
  if (!(sample_type_ & PERF_SAMPLE_TIME)) {
    parsed_events_sorted_by_time_.resize(parsed_events_.size());
    for (size_t i = 0; i < parsed_events_.size(); ++i) {
      parsed_events_sorted_by_time_[i] = &parsed_events_[i];
    }
    return;
  }
  std::vector<std::unique_ptr<EventAndTime>> events_and_times;
  events_and_times.resize(parsed_events_.size());
  for (size_t i = 0; i < parsed_events_.size(); ++i) {
    std::unique_ptr<EventAndTime> event_and_time(new EventAndTime);

    // Store the timestamp and event pointer in an array.
    event_and_time->event = &parsed_events_[i];

    struct perf_sample sample_info;
    PerfSampleCustodian custodian(sample_info);
    CHECK(ReadPerfSampleInfo(*parsed_events_[i].raw_event, &sample_info));
    event_and_time->time = sample_info.time;

    events_and_times[i] = std::move(event_and_time);
  }
  // Sort the events based on timestamp, and then populate the sorted event
  // vector in sorted order.
  std::stable_sort(events_and_times.begin(), events_and_times.end(),
                   CompareParsedEventTimes);

  parsed_events_sorted_by_time_.resize(events_and_times.size());
  for (unsigned int i = 0; i < events_and_times.size(); ++i) {
    parsed_events_sorted_by_time_[i] = events_and_times[i]->event;
  }
}

bool PerfParser::ProcessEvents() {
  memset(&stats_, 0, sizeof(stats_));

  stats_.did_remap = false;   // Explicitly clear the remap flag.

  // Pid 0 is called the swapper process. Even though perf does not record a
  // COMM event for pid 0, we act like we did receive a COMM event for it. Perf
  // does this itself, example:
  //   http://lxr.free-electrons.com/source/tools/perf/util/session.c#L1120
  commands_.insert(kSwapperCommandName);
  pidtid_to_comm_map_[std::make_pair(kSwapperPid, kSwapperPid)] =
      &(*commands_.find(kSwapperCommandName));

  // NB: Not necessarily actually sorted by time.
  for (unsigned int i = 0; i < parsed_events_sorted_by_time_.size(); ++i) {
    ParsedEvent& parsed_event = *parsed_events_sorted_by_time_[i];
    event_t& event = *parsed_event.raw_event;
    switch (event.header.type) {
      case PERF_RECORD_SAMPLE:
        // SAMPLE doesn't have any fields to log at a fixed,
        // previously-endian-swapped location. This used to log ip.
        VLOG(1) << "SAMPLE";
        ++stats_.num_sample_events;

        if (MapSampleEvent(&parsed_event)) {
          ++stats_.num_sample_events_mapped;
        }
        break;
      case PERF_RECORD_MMAP: {
        VLOG(1) << "MMAP: " << event.mmap.filename;
        ++stats_.num_mmap_events;
        // Use the array index of the current mmap event as a unique identifier.
        CHECK(MapMmapEvent(&event.mmap, i)) << "Unable to map MMAP event!";
        // No samples in this MMAP region yet, hopefully.
        parsed_event.num_samples_in_mmap_region = 0;
        DSOInfo dso_info;
        // TODO(sque): Add Build ID as well.
        dso_info.name = event.mmap.filename;
        dso_set_.insert(dso_info);
        break;
      }
      case PERF_RECORD_MMAP2: {
        VLOG(1) << "MMAP2: " << event.mmap2.filename;
        ++stats_.num_mmap_events;
        // Use the array index of the current mmap event as a unique identifier.
        CHECK(MapMmapEvent(&event.mmap2, i)) << "Unable to map MMAP2 event!";
        // No samples in this MMAP region yet, hopefully.
        parsed_event.num_samples_in_mmap_region = 0;
        DSOInfo dso_info;
        // TODO(sque): Add Build ID as well.
        dso_info.name = event.mmap2.filename;
        dso_set_.insert(dso_info);
        break;
      }
      case PERF_RECORD_FORK:
        VLOG(1) << "FORK: " << event.fork.ppid << ":" << event.fork.ptid
                << " -> " << event.fork.pid << ":" << event.fork.tid;
        ++stats_.num_fork_events;
        CHECK(MapForkEvent(event.fork)) << "Unable to map FORK event!";
        break;
      case PERF_RECORD_EXIT:
        // EXIT events have the same structure as FORK events.
        VLOG(1) << "EXIT: " << event.fork.ppid << ":" << event.fork.ptid;
        ++stats_.num_exit_events;
        break;
      case PERF_RECORD_COMM:
        VLOG(1) << "COMM: " << event.comm.pid << ":" << event.comm.tid << ": "
                << event.comm.comm;
        ++stats_.num_comm_events;
        CHECK(MapCommEvent(event.comm));
        commands_.insert(event.comm.comm);
        pidtid_to_comm_map_[std::make_pair(event.comm.pid, event.comm.tid)] =
            &(*commands_.find(event.comm.comm));
        break;
      case PERF_RECORD_LOST:
      case PERF_RECORD_THROTTLE:
      case PERF_RECORD_UNTHROTTLE:
      case PERF_RECORD_READ:
      case PERF_RECORD_MAX:
        VLOG(1) << "Parsed event type: " << event.header.type
                << ". Doing nothing.";
        break;
    case SIMPLE_PERF_RECORD_KERNEL_SYMBOL:
    case SIMPLE_PERF_RECORD_DSO:
    case SIMPLE_PERF_RECORD_SYMBOL:
    case SIMPLE_PERF_RECORD_SPLIT:
    case SIMPLE_PERF_RECORD_SPLIT_END:
      break;
      default:
        LOG(ERROR) << "Unknown event type: " << event.header.type;
        return false;
    }
  }

  // Print stats collected from parsing.
  DLOG(INFO) << "Parser processed: "
            << stats_.num_mmap_events << " MMAP/MMAP2 events, "
            << stats_.num_comm_events << " COMM events, "
            << stats_.num_fork_events << " FORK events, "
            << stats_.num_exit_events << " EXIT events, "
            << stats_.num_sample_events << " SAMPLE events, "
            << stats_.num_sample_events_mapped << " of these were mapped";

  float sample_mapping_percentage =
      static_cast<float>(stats_.num_sample_events_mapped) /
      stats_.num_sample_events * 100.;
  float threshold = options_.sample_mapping_percentage_threshold;
  if (sample_mapping_percentage < threshold) {
    LOG(WARNING) << "Mapped " << static_cast<int>(sample_mapping_percentage)
               << "% of samples, expected at least "
               << static_cast<int>(threshold) << "%";
    return false;
  }
  stats_.did_remap = options_.do_remap;
  return true;
}

bool PerfParser::MapSampleEvent(ParsedEvent* parsed_event) {
  bool mapping_failed = false;

  // Find the associated command.
  if (!(sample_type_ & PERF_SAMPLE_IP && sample_type_ & PERF_SAMPLE_TID))
    return false;
  perf_sample sample_info;
  PerfSampleCustodian custodian(sample_info);
  if (!ReadPerfSampleInfo(*parsed_event->raw_event, &sample_info))
    return false;
  PidTid pidtid = std::make_pair(sample_info.pid, sample_info.tid);
  const auto comm_iter = pidtid_to_comm_map_.find(pidtid);
  if (comm_iter != pidtid_to_comm_map_.end()) {
    parsed_event->set_command(comm_iter->second);
  }

  const uint64_t unmapped_event_ip = sample_info.ip;

  // Map the event IP itself.
  if (!MapIPAndPidAndGetNameAndOffset(sample_info.ip,
                                      sample_info.pid,
                                      &sample_info.ip,
                                      &parsed_event->dso_and_offset)) {
    mapping_failed = true;
  }

  if (sample_info.callchain &&
      !MapCallchain(sample_info.ip,
                    sample_info.pid,
                    unmapped_event_ip,
                    sample_info.callchain,
                    parsed_event)) {
    mapping_failed = true;
  }

  if (sample_info.branch_stack &&
      !MapBranchStack(sample_info.pid,
                      sample_info.branch_stack,
                      parsed_event)) {
    mapping_failed = true;
  }

  if (options_.do_remap) {
    // Write the remapped data back to the raw event regardless of
    // whether it was entirely successfully remapped.  A single failed
    // remap should not invalidate all the other remapped entries.
    if (!WritePerfSampleInfo(sample_info, parsed_event->raw_event)) {
      LOG(ERROR) << "Failed to write back remapped sample info.";
      return false;
    }
  }

  return !mapping_failed;
}

bool PerfParser::MapCallchain(const uint64_t ip,
                              const uint32_t pid,
                              const uint64_t original_event_addr,
                              struct ip_callchain* callchain,
                              ParsedEvent* parsed_event) {
  if (!callchain) {
    LOG(ERROR) << "NULL call stack data.";
    return false;
  }

  bool mapping_failed = false;

  // If the callchain's length is 0, there is no work to do.
  if (callchain->nr == 0)
    return true;

  // Keeps track of whether the current entry is kernel or user.
  parsed_event->callchain.resize(callchain->nr);
  int num_entries_mapped = 0;
  for (unsigned int j = 0; j < callchain->nr; ++j) {
    uint64_t entry = callchain->ips[j];
    // When a callchain context entry is found, do not attempt to symbolize it.
    if (entry >= PERF_CONTEXT_MAX) {
      continue;
    }
    // The sample address has already been mapped so no need to map it.
    if (entry == original_event_addr) {
      callchain->ips[j] = ip;
      continue;
    }
    if (!MapIPAndPidAndGetNameAndOffset(
            entry,
            pid,
            &callchain->ips[j],
            &parsed_event->callchain[num_entries_mapped++])) {
      mapping_failed = true;
    }
  }
  // Not all the entries were mapped.  Trim |parsed_event->callchain| to
  // remove unused entries at the end.
  parsed_event->callchain.resize(num_entries_mapped);

  return !mapping_failed;
}

bool PerfParser::MapBranchStack(const uint32_t pid,
                                struct branch_stack* branch_stack,
                                ParsedEvent* parsed_event) {
  if (!branch_stack) {
    LOG(ERROR) << "NULL branch stack data.";
    return false;
  }

  // First, trim the branch stack to remove trailing null entries.
  size_t trimmed_size = 0;
  for (size_t i = 0; i < branch_stack->nr; ++i) {
    // Count the number of non-null entries before the first null entry.
    if (IsNullBranchStackEntry(branch_stack->entries[i])) {
      break;
    }
    ++trimmed_size;
  }

  // If a null entry was found, make sure all subsequent null entries are NULL
  // as well.
  for (size_t i = trimmed_size; i < branch_stack->nr; ++i) {
    const struct branch_entry& entry = branch_stack->entries[i];
    if (!IsNullBranchStackEntry(entry)) {
      LOG(ERROR) << "Non-null branch stack entry found after null entry: "
                 << reinterpret_cast<void*>(entry.from) << " -> "
                 << reinterpret_cast<void*>(entry.to);
      return false;
    }
  }

  // Map branch stack addresses.
  parsed_event->branch_stack.resize(trimmed_size);
  for (unsigned int i = 0; i < trimmed_size; ++i) {
    struct branch_entry& entry = branch_stack->entries[i];
    ParsedEvent::BranchEntry& parsed_entry = parsed_event->branch_stack[i];
    if (!MapIPAndPidAndGetNameAndOffset(entry.from,
                                        pid,
                                        &entry.from,
                                        &parsed_entry.from)) {
      return false;
    }
    if (!MapIPAndPidAndGetNameAndOffset(entry.to,
                                        pid,
                                        &entry.to,
                                        &parsed_entry.to)) {
      return false;
    }
    parsed_entry.predicted = entry.flags.predicted;
    // Either predicted or mispredicted, not both. But don't use a CHECK here,
    // just exit gracefully because it's a minor issue.
    if (entry.flags.predicted == entry.flags.mispred) {
      LOG(ERROR) << "Branch stack entry predicted and mispred flags "
                 << "both have value " << entry.flags.mispred;
      return false;
    }
  }

  return true;
}

bool PerfParser::MapIPAndPidAndGetNameAndOffset(
    uint64_t ip,
    uint32_t pid,
    uint64_t* new_ip,
    ParsedEvent::DSOAndOffset* dso_and_offset) {

  // Attempt to find the synthetic address of the IP sample in this order:
  // 1. Address space of its own process.
  // 2. Address space of the kernel.

  uint64_t mapped_addr = 0;

  // Sometimes the first event we see is a SAMPLE event and we don't have the
  // time to create an address mapper for a process. Example, for pid 0.
  AddressMapper* mapper = GetOrCreateProcessMapper(pid).first;
  bool mapped = mapper->GetMappedAddress(ip, &mapped_addr);
  if (!mapped) {
    mapper = kernel_mapper_.get();
    mapped = mapper->GetMappedAddress(ip, &mapped_addr);
  }

  // TODO(asharif): What should we do when we cannot map a SAMPLE event?
  if (mapped) {
    if (dso_and_offset) {
      uint64_t id = kuint64max;
      CHECK(mapper->GetMappedIDAndOffset(ip, &id, &dso_and_offset->offset_));
      // Make sure the ID points to a valid event.
      CHECK_LE(id, parsed_events_sorted_by_time_.size());
      ParsedEvent* parsed_event = parsed_events_sorted_by_time_[id];
      const event_t* raw_event = parsed_event->raw_event;

      DSOInfo dso_info;
      if (raw_event->header.type == PERF_RECORD_MMAP) {
        dso_info.name = raw_event->mmap.filename;
      } else if (raw_event->header.type == PERF_RECORD_MMAP2) {
        dso_info.name = raw_event->mmap2.filename;
      } else {
        LOG(FATAL) << "Expected MMAP or MMAP2 event";
      }

      // Find the mmap DSO filename in the set of known DSO names.
      // TODO(sque): take build IDs into account.
      std::set<DSOInfo>::const_iterator dso_iter = dso_set_.find(dso_info);
      CHECK(dso_iter != dso_set_.end());
      dso_and_offset->dso_info_ = &(*dso_iter);

      ++parsed_event->num_samples_in_mmap_region;
    }
    if (options_.do_remap)
      *new_ip = mapped_addr;
  }
  return mapped;
}

bool PerfParser::MapMmapEvent(uint64_t id,
                              uint32_t pid,
                              uint64_t* p_start,
                              uint64_t* p_len,
                              uint64_t* p_pgoff)
{
  // We need to hide only the real kernel addresses.  However, to make things
  // more secure, and make the mapping idempotent, we should remap all
  // addresses, both kernel and non-kernel.
  AddressMapper* mapper =
      (pid == kKernelPid ? kernel_mapper_.get() :
       GetOrCreateProcessMapper(pid).first);

  uint64_t start = *p_start;
  uint64_t len = *p_len;
  uint64_t pgoff = *p_pgoff;

  // |id| == 0 corresponds to the kernel mmap. We have several cases here:
  //
  // For ARM and x86, in sudo mode, pgoff == start, example:
  // start=0x80008200
  // pgoff=0x80008200
  // len  =0xfffffff7ff7dff
  //
  // For x86-64, in sudo mode, pgoff is between start and start + len. SAMPLE
  // events lie between pgoff and pgoff + length of the real kernel binary,
  // example:
  // start=0x3bc00000
  // pgoff=0xffffffffbcc00198
  // len  =0xffffffff843fffff
  // SAMPLE events will be found after pgoff. For kernels with ASLR, pgoff will
  // be something only visible to the root user, and will be randomized at
  // startup. With |remap| set to true, we should hide pgoff in this case. So we
  // normalize all SAMPLE events relative to pgoff.
  //
  // For non-sudo mode, the kernel will be mapped from 0 to the pointer limit,
  // example:
  // start=0x0
  // pgoff=0x0
  // len  =0xffffffff
  if (id == 0) {
    // If pgoff is between start and len, we normalize the event by setting
    // start to be pgoff just like how it is for ARM and x86. We also set len to
    // be a much smaller number (closer to the real length of the kernel binary)
    // because SAMPLEs are actually only seen between |event->pgoff| and
    // |event->pgoff + kernel text size|.
    if (pgoff > start && pgoff < start + len) {
      len = len + start - pgoff;
      start = pgoff;
    }
    // For kernels with ALSR pgoff is critical information that should not be
    // revealed when |remap| is true.
    pgoff = 0;
  }

  if (!mapper->MapWithID(start, len, id, pgoff, true)) {
    mapper->DumpToLog();
    return false;
  }

  if (options_.do_remap) {
    uint64_t mapped_addr;
    CHECK(mapper->GetMappedAddress(start, &mapped_addr));
    *p_start = mapped_addr;
    *p_len = len;
    *p_pgoff = pgoff;
  }
  return true;
}

std::pair<AddressMapper*, bool> PerfParser::GetOrCreateProcessMapper(
    uint32_t pid, uint32_t *ppid) {
  const auto& search = process_mappers_.find(pid);
  if (search != process_mappers_.end()) {
    return std::make_pair(search->second.get(), false);
  }

  std::unique_ptr<AddressMapper> mapper;
  const auto& parent_mapper = (ppid ? process_mappers_.find(*ppid) : process_mappers_.end());
  if (parent_mapper != process_mappers_.end())
      mapper.reset(new AddressMapper(*parent_mapper->second));
  else
    mapper.reset(new AddressMapper());

  const auto inserted =
      process_mappers_.insert(search, std::make_pair(pid, std::move(mapper)));
  return std::make_pair(inserted->second.get(), true);
}

bool PerfParser::MapCommEvent(const struct comm_event& event) {
  GetOrCreateProcessMapper(event.pid);
  return true;
}

bool PerfParser::MapForkEvent(const struct fork_event& event) {
  PidTid parent = std::make_pair(event.ppid, event.ptid);
  PidTid child = std::make_pair(event.pid, event.tid);
  if (parent != child &&
      pidtid_to_comm_map_.find(parent) != pidtid_to_comm_map_.end()) {
    pidtid_to_comm_map_[child] = pidtid_to_comm_map_[parent];
  }

  const uint32_t pid = event.pid;

  // If the parent and child pids are the same, this is just a new thread
  // within the same process, so don't do anything.
  if (event.ppid == pid)
    return true;

  uint32_t ppid = event.ppid;
  if (!GetOrCreateProcessMapper(pid, &ppid).second) {
    DLOG(INFO) << "Found an existing process mapper with pid: " << pid;
  }

  return true;
}

}  // namespace quipper