1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "prepare_for_register_allocation.h"
#include "dex/dex_file_types.h"
#include "driver/compiler_options.h"
#include "jni/jni_internal.h"
#include "optimizing_compiler_stats.h"
#include "well_known_classes.h"
namespace art {
void PrepareForRegisterAllocation::Run() {
// Order does not matter.
for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
// No need to visit the phis.
for (HInstructionIteratorHandleChanges inst_it(block->GetInstructions()); !inst_it.Done();
inst_it.Advance()) {
inst_it.Current()->Accept(this);
}
}
}
void PrepareForRegisterAllocation::VisitCheckCast(HCheckCast* check_cast) {
// Record only those bitstring type checks that make it to the codegen stage.
if (check_cast->GetTypeCheckKind() == TypeCheckKind::kBitstringCheck) {
MaybeRecordStat(stats_, MethodCompilationStat::kBitstringTypeCheck);
}
}
void PrepareForRegisterAllocation::VisitInstanceOf(HInstanceOf* instance_of) {
// Record only those bitstring type checks that make it to the codegen stage.
if (instance_of->GetTypeCheckKind() == TypeCheckKind::kBitstringCheck) {
MaybeRecordStat(stats_, MethodCompilationStat::kBitstringTypeCheck);
}
}
void PrepareForRegisterAllocation::VisitNullCheck(HNullCheck* check) {
check->ReplaceWith(check->InputAt(0));
if (compiler_options_.GetImplicitNullChecks()) {
HInstruction* next = check->GetNext();
// The `PrepareForRegisterAllocation` pass removes `HBoundType` from the graph,
// so do it ourselves now to not prevent optimizations.
while (next->IsBoundType()) {
next = next->GetNext();
VisitBoundType(next->GetPrevious()->AsBoundType());
}
if (next->CanDoImplicitNullCheckOn(check->InputAt(0))) {
check->MarkEmittedAtUseSite();
}
}
}
void PrepareForRegisterAllocation::VisitDivZeroCheck(HDivZeroCheck* check) {
check->ReplaceWith(check->InputAt(0));
}
void PrepareForRegisterAllocation::VisitDeoptimize(HDeoptimize* deoptimize) {
if (deoptimize->GuardsAnInput()) {
// Replace the uses with the actual guarded instruction.
deoptimize->ReplaceWith(deoptimize->GuardedInput());
deoptimize->RemoveGuard();
}
}
void PrepareForRegisterAllocation::VisitBoundsCheck(HBoundsCheck* check) {
check->ReplaceWith(check->InputAt(0));
if (check->IsStringCharAt()) {
// Add a fake environment for String.charAt() inline info as we want the exception
// to appear as being thrown from there. Skip if we're compiling String.charAt() itself.
ArtMethod* char_at_method = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
if (GetGraph()->GetArtMethod() != char_at_method) {
ArenaAllocator* allocator = GetGraph()->GetAllocator();
HEnvironment* environment = new (allocator) HEnvironment(allocator,
/* number_of_vregs= */ 0u,
char_at_method,
/* dex_pc= */ dex::kDexNoIndex,
check);
check->InsertRawEnvironment(environment);
}
}
}
void PrepareForRegisterAllocation::VisitBoundType(HBoundType* bound_type) {
bound_type->ReplaceWith(bound_type->InputAt(0));
bound_type->GetBlock()->RemoveInstruction(bound_type);
}
void PrepareForRegisterAllocation::VisitArraySet(HArraySet* instruction) {
HInstruction* value = instruction->GetValue();
// PrepareForRegisterAllocation::VisitBoundType may have replaced a
// BoundType (as value input of this ArraySet) with a NullConstant.
// If so, this ArraySet no longer needs a type check.
if (value->IsNullConstant()) {
DCHECK_EQ(value->GetType(), DataType::Type::kReference);
if (instruction->NeedsTypeCheck()) {
instruction->ClearNeedsTypeCheck();
}
}
}
void PrepareForRegisterAllocation::VisitClinitCheck(HClinitCheck* check) {
// Try to find a static invoke or a new-instance from which this check originated.
HInstruction* implicit_clinit = nullptr;
for (const HUseListNode<HInstruction*>& use : check->GetUses()) {
HInstruction* user = use.GetUser();
if ((user->IsInvokeStaticOrDirect() || user->IsNewInstance()) &&
CanMoveClinitCheck(check, user)) {
implicit_clinit = user;
if (user->IsInvokeStaticOrDirect()) {
DCHECK(user->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck());
user->AsInvokeStaticOrDirect()->RemoveExplicitClinitCheck(
HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
} else {
DCHECK(user->IsNewInstance());
// We delegate the initialization duty to the allocation.
if (user->AsNewInstance()->GetEntrypoint() == kQuickAllocObjectInitialized) {
user->AsNewInstance()->SetEntrypoint(kQuickAllocObjectResolved);
}
}
break;
}
}
// If we found a static invoke or new-instance for merging, remove the check
// from dominated static invokes.
if (implicit_clinit != nullptr) {
const HUseList<HInstruction*>& uses = check->GetUses();
for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
HInstruction* user = it->GetUser();
// All other uses must be dominated.
DCHECK(implicit_clinit->StrictlyDominates(user) || (implicit_clinit == user));
++it; // Advance before we remove the node, reference to the next node is preserved.
if (user->IsInvokeStaticOrDirect()) {
user->AsInvokeStaticOrDirect()->RemoveExplicitClinitCheck(
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
}
}
}
HLoadClass* load_class = check->GetLoadClass();
bool can_merge_with_load_class = CanMoveClinitCheck(load_class, check);
check->ReplaceWith(load_class);
if (implicit_clinit != nullptr) {
// Remove the check from the graph. It has been merged into the invoke or new-instance.
check->GetBlock()->RemoveInstruction(check);
// Check if we can merge the load class as well, or whether the LoadClass is now dead.
if ((can_merge_with_load_class || !load_class->CanThrow()) && !load_class->HasUses()) {
load_class->GetBlock()->RemoveInstruction(load_class);
}
} else if (can_merge_with_load_class &&
load_class->GetLoadKind() != HLoadClass::LoadKind::kRuntimeCall) {
DCHECK(!load_class->NeedsAccessCheck());
// Pass the initialization duty to the `HLoadClass` instruction,
// and remove the instruction from the graph.
DCHECK(load_class->HasEnvironment());
load_class->SetMustGenerateClinitCheck(true);
check->GetBlock()->RemoveInstruction(check);
}
}
bool PrepareForRegisterAllocation::CanEmitConditionAt(HCondition* condition,
HInstruction* user) const {
if (condition->GetNext() != user) {
return false;
}
if (user->IsIf() || user->IsDeoptimize()) {
return true;
}
if (user->IsSelect() && user->AsSelect()->GetCondition() == condition) {
return true;
}
return false;
}
void PrepareForRegisterAllocation::VisitCondition(HCondition* condition) {
if (condition->HasOnlyOneNonEnvironmentUse()) {
HInstruction* user = condition->GetUses().front().GetUser();
if (CanEmitConditionAt(condition, user)) {
condition->MarkEmittedAtUseSite();
}
}
}
void PrepareForRegisterAllocation::VisitConstructorFence(HConstructorFence* constructor_fence) {
// Trivially remove redundant HConstructorFence when it immediately follows an HNewInstance
// to an uninitialized class. In this special case, the art_quick_alloc_object_resolved
// will already have the 'dmb' which is strictly stronger than an HConstructorFence.
//
// The instruction builder always emits "x = HNewInstance; HConstructorFence(x)" so this
// is effectively pattern-matching that particular case and undoing the redundancy the builder
// had introduced.
//
// TODO: Move this to a separate pass.
HInstruction* allocation_inst = constructor_fence->GetAssociatedAllocation();
if (allocation_inst != nullptr && allocation_inst->IsNewInstance()) {
HNewInstance* new_inst = allocation_inst->AsNewInstance();
// This relies on the entrypoint already being set to the more optimized version;
// as that happens in this pass, this redundancy removal also cannot happen any earlier.
if (new_inst != nullptr && new_inst->GetEntrypoint() == kQuickAllocObjectResolved) {
// If this was done in an earlier pass, we would want to match that `previous` was an input
// to the `constructor_fence`. However, since this pass removes the inputs to the fence,
// we can ignore the inputs and just remove the instruction from its block.
DCHECK_EQ(1u, constructor_fence->InputCount());
// TODO: GetAssociatedAllocation should not care about multiple inputs
// if we are in prepare_for_register_allocation pass only.
constructor_fence->GetBlock()->RemoveInstruction(constructor_fence);
MaybeRecordStat(stats_,
MethodCompilationStat::kConstructorFenceRemovedPFRA);
return;
}
// HNewArray does not need this check because the art_quick_alloc_array does not itself
// have a dmb in any normal situation (i.e. the array class is never exactly in the
// "resolved" state). If the array class is not yet loaded, it will always go from
// Unloaded->Initialized state.
}
// Remove all the inputs to the constructor fence;
// they aren't used by the InstructionCodeGenerator and this lets us avoid creating a
// LocationSummary in the LocationsBuilder.
constructor_fence->RemoveAllInputs();
}
void PrepareForRegisterAllocation::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
if (invoke->IsStaticWithExplicitClinitCheck()) {
HInstruction* last_input = invoke->GetInputs().back();
DCHECK(last_input->IsLoadClass())
<< "Last input is not HLoadClass. It is " << last_input->DebugName();
// Detach the explicit class initialization check from the invoke.
// Keeping track of the initializing instruction is no longer required
// at this stage (i.e., after inlining has been performed).
invoke->RemoveExplicitClinitCheck(HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
// Merging with load class should have happened in VisitClinitCheck().
DCHECK(!CanMoveClinitCheck(last_input, invoke));
}
}
bool PrepareForRegisterAllocation::CanMoveClinitCheck(HInstruction* input,
HInstruction* user) const {
// Determine if input and user come from the same dex instruction, so that we can move
// the clinit check responsibility from one to the other, i.e. from HClinitCheck (user)
// to HLoadClass (input), or from HClinitCheck (input) to HInvokeStaticOrDirect (user),
// or from HLoadClass (input) to HNewInstance (user).
// Start with a quick dex pc check.
if (user->GetDexPc() != input->GetDexPc()) {
return false;
}
// Now do a thorough environment check that this is really coming from the same instruction in
// the same inlined graph. Unfortunately, we have to go through the whole environment chain.
HEnvironment* user_environment = user->GetEnvironment();
HEnvironment* input_environment = input->GetEnvironment();
while (user_environment != nullptr || input_environment != nullptr) {
if (user_environment == nullptr || input_environment == nullptr) {
// Different environment chain length. This happens when a method is called
// once directly and once indirectly through another inlined method.
return false;
}
if (user_environment->GetDexPc() != input_environment->GetDexPc() ||
user_environment->GetMethod() != input_environment->GetMethod()) {
return false;
}
user_environment = user_environment->GetParent();
input_environment = input_environment->GetParent();
}
// Check for code motion taking the input to a different block.
if (user->GetBlock() != input->GetBlock()) {
return false;
}
// In debug mode, check that we have not inserted a throwing instruction
// or an instruction with side effects between input and user.
if (kIsDebugBuild) {
for (HInstruction* between = input->GetNext(); between != user; between = between->GetNext()) {
CHECK(between != nullptr); // User must be after input in the same block.
CHECK(!between->CanThrow());
CHECK(!between->HasSideEffects());
}
}
return true;
}
void PrepareForRegisterAllocation::VisitTypeConversion(HTypeConversion* instruction) {
// For simplicity, our code generators don't handle implicit type conversion, so ensure
// there are none before hitting codegen.
if (instruction->IsImplicitConversion()) {
instruction->ReplaceWith(instruction->GetInput());
instruction->GetBlock()->RemoveInstruction(instruction);
}
}
} // namespace art
|