1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "register_allocator.h"
#include <iostream>
#include <sstream>
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "base/bit_vector-inl.h"
#include "code_generator.h"
#include "register_allocator_graph_color.h"
#include "register_allocator_linear_scan.h"
#include "ssa_liveness_analysis.h"
namespace art {
RegisterAllocator::RegisterAllocator(ScopedArenaAllocator* allocator,
CodeGenerator* codegen,
const SsaLivenessAnalysis& liveness)
: allocator_(allocator),
codegen_(codegen),
liveness_(liveness) {}
std::unique_ptr<RegisterAllocator> RegisterAllocator::Create(ScopedArenaAllocator* allocator,
CodeGenerator* codegen,
const SsaLivenessAnalysis& analysis,
Strategy strategy) {
switch (strategy) {
case kRegisterAllocatorLinearScan:
return std::unique_ptr<RegisterAllocator>(
new (allocator) RegisterAllocatorLinearScan(allocator, codegen, analysis));
case kRegisterAllocatorGraphColor:
return std::unique_ptr<RegisterAllocator>(
new (allocator) RegisterAllocatorGraphColor(allocator, codegen, analysis));
default:
LOG(FATAL) << "Invalid register allocation strategy: " << strategy;
UNREACHABLE();
}
}
RegisterAllocator::~RegisterAllocator() {
if (kIsDebugBuild) {
// Poison live interval pointers with "Error: BAD 71ve1nt3rval."
LiveInterval* bad_live_interval = reinterpret_cast<LiveInterval*>(0xebad7113u);
for (HBasicBlock* block : codegen_->GetGraph()->GetLinearOrder()) {
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
it.Current()->SetLiveInterval(bad_live_interval);
}
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
it.Current()->SetLiveInterval(bad_live_interval);
}
}
}
}
bool RegisterAllocator::CanAllocateRegistersFor(const HGraph& graph ATTRIBUTE_UNUSED,
InstructionSet instruction_set) {
return instruction_set == InstructionSet::kArm
|| instruction_set == InstructionSet::kArm64
|| instruction_set == InstructionSet::kMips
|| instruction_set == InstructionSet::kMips64
|| instruction_set == InstructionSet::kThumb2
|| instruction_set == InstructionSet::kX86
|| instruction_set == InstructionSet::kX86_64;
}
class AllRangesIterator : public ValueObject {
public:
explicit AllRangesIterator(LiveInterval* interval)
: current_interval_(interval),
current_range_(interval->GetFirstRange()) {}
bool Done() const { return current_interval_ == nullptr; }
LiveRange* CurrentRange() const { return current_range_; }
LiveInterval* CurrentInterval() const { return current_interval_; }
void Advance() {
current_range_ = current_range_->GetNext();
if (current_range_ == nullptr) {
current_interval_ = current_interval_->GetNextSibling();
if (current_interval_ != nullptr) {
current_range_ = current_interval_->GetFirstRange();
}
}
}
private:
LiveInterval* current_interval_;
LiveRange* current_range_;
DISALLOW_COPY_AND_ASSIGN(AllRangesIterator);
};
bool RegisterAllocator::ValidateIntervals(ArrayRef<LiveInterval* const> intervals,
size_t number_of_spill_slots,
size_t number_of_out_slots,
const CodeGenerator& codegen,
bool processing_core_registers,
bool log_fatal_on_failure) {
size_t number_of_registers = processing_core_registers
? codegen.GetNumberOfCoreRegisters()
: codegen.GetNumberOfFloatingPointRegisters();
ScopedArenaAllocator allocator(codegen.GetGraph()->GetArenaStack());
ScopedArenaVector<ArenaBitVector*> liveness_of_values(
allocator.Adapter(kArenaAllocRegisterAllocatorValidate));
liveness_of_values.reserve(number_of_registers + number_of_spill_slots);
size_t max_end = 0u;
for (LiveInterval* start_interval : intervals) {
for (AllRangesIterator it(start_interval); !it.Done(); it.Advance()) {
max_end = std::max(max_end, it.CurrentRange()->GetEnd());
}
}
// Allocate a bit vector per register. A live interval that has a register
// allocated will populate the associated bit vector based on its live ranges.
for (size_t i = 0; i < number_of_registers + number_of_spill_slots; ++i) {
liveness_of_values.push_back(
ArenaBitVector::Create(&allocator, max_end, false, kArenaAllocRegisterAllocatorValidate));
liveness_of_values.back()->ClearAllBits();
}
for (LiveInterval* start_interval : intervals) {
for (AllRangesIterator it(start_interval); !it.Done(); it.Advance()) {
LiveInterval* current = it.CurrentInterval();
HInstruction* defined_by = current->GetParent()->GetDefinedBy();
if (current->GetParent()->HasSpillSlot()
// Parameters and current method have their own stack slot.
&& !(defined_by != nullptr && (defined_by->IsParameterValue()
|| defined_by->IsCurrentMethod()))) {
BitVector* liveness_of_spill_slot = liveness_of_values[number_of_registers
+ current->GetParent()->GetSpillSlot() / kVRegSize
- number_of_out_slots];
for (size_t j = it.CurrentRange()->GetStart(); j < it.CurrentRange()->GetEnd(); ++j) {
if (liveness_of_spill_slot->IsBitSet(j)) {
if (log_fatal_on_failure) {
std::ostringstream message;
message << "Spill slot conflict at " << j;
LOG(FATAL) << message.str();
} else {
return false;
}
} else {
liveness_of_spill_slot->SetBit(j);
}
}
}
if (current->HasRegister()) {
if (kIsDebugBuild && log_fatal_on_failure && !current->IsFixed()) {
// Only check when an error is fatal. Only tests code ask for non-fatal failures
// and test code may not properly fill the right information to the code generator.
CHECK(codegen.HasAllocatedRegister(processing_core_registers, current->GetRegister()));
}
BitVector* liveness_of_register = liveness_of_values[current->GetRegister()];
for (size_t j = it.CurrentRange()->GetStart(); j < it.CurrentRange()->GetEnd(); ++j) {
if (liveness_of_register->IsBitSet(j)) {
if (current->IsUsingInputRegister() && current->CanUseInputRegister()) {
continue;
}
if (log_fatal_on_failure) {
std::ostringstream message;
message << "Register conflict at " << j << " ";
if (defined_by != nullptr) {
message << "(" << defined_by->DebugName() << ")";
}
message << "for ";
if (processing_core_registers) {
codegen.DumpCoreRegister(message, current->GetRegister());
} else {
codegen.DumpFloatingPointRegister(message, current->GetRegister());
}
for (LiveInterval* interval : intervals) {
if (interval->HasRegister()
&& interval->GetRegister() == current->GetRegister()
&& interval->CoversSlow(j)) {
message << std::endl;
if (interval->GetDefinedBy() != nullptr) {
message << interval->GetDefinedBy()->GetKind() << " ";
} else {
message << "physical ";
}
interval->Dump(message);
}
}
LOG(FATAL) << message.str();
} else {
return false;
}
} else {
liveness_of_register->SetBit(j);
}
}
}
}
}
return true;
}
LiveInterval* RegisterAllocator::Split(LiveInterval* interval, size_t position) {
DCHECK_GE(position, interval->GetStart());
DCHECK(!interval->IsDeadAt(position));
if (position == interval->GetStart()) {
// Spill slot will be allocated when handling `interval` again.
interval->ClearRegister();
if (interval->HasHighInterval()) {
interval->GetHighInterval()->ClearRegister();
} else if (interval->HasLowInterval()) {
interval->GetLowInterval()->ClearRegister();
}
return interval;
} else {
LiveInterval* new_interval = interval->SplitAt(position);
if (interval->HasHighInterval()) {
LiveInterval* high = interval->GetHighInterval()->SplitAt(position);
new_interval->SetHighInterval(high);
high->SetLowInterval(new_interval);
} else if (interval->HasLowInterval()) {
LiveInterval* low = interval->GetLowInterval()->SplitAt(position);
new_interval->SetLowInterval(low);
low->SetHighInterval(new_interval);
}
return new_interval;
}
}
LiveInterval* RegisterAllocator::SplitBetween(LiveInterval* interval, size_t from, size_t to) {
HBasicBlock* block_from = liveness_.GetBlockFromPosition(from / 2);
HBasicBlock* block_to = liveness_.GetBlockFromPosition(to / 2);
DCHECK(block_from != nullptr);
DCHECK(block_to != nullptr);
// Both locations are in the same block. We split at the given location.
if (block_from == block_to) {
return Split(interval, to);
}
/*
* Non-linear control flow will force moves at every branch instruction to the new location.
* To avoid having all branches doing the moves, we find the next non-linear position and
* split the interval at this position. Take the following example (block number is the linear
* order position):
*
* B1
* / \
* B2 B3
* \ /
* B4
*
* B2 needs to split an interval, whose next use is in B4. If we were to split at the
* beginning of B4, B3 would need to do a move between B3 and B4 to ensure the interval
* is now in the correct location. It makes performance worst if the interval is spilled
* and both B2 and B3 need to reload it before entering B4.
*
* By splitting at B3, we give a chance to the register allocator to allocate the
* interval to the same register as in B1, and therefore avoid doing any
* moves in B3.
*/
if (block_from->GetDominator() != nullptr) {
for (HBasicBlock* dominated : block_from->GetDominator()->GetDominatedBlocks()) {
size_t position = dominated->GetLifetimeStart();
if ((position > from) && (block_to->GetLifetimeStart() > position)) {
// Even if we found a better block, we continue iterating in case
// a dominated block is closer.
// Note that dominated blocks are not sorted in liveness order.
block_to = dominated;
DCHECK_NE(block_to, block_from);
}
}
}
// If `to` is in a loop, find the outermost loop header which does not contain `from`.
for (HLoopInformationOutwardIterator it(*block_to); !it.Done(); it.Advance()) {
HBasicBlock* header = it.Current()->GetHeader();
if (block_from->GetLifetimeStart() >= header->GetLifetimeStart()) {
break;
}
block_to = header;
}
// Split at the start of the found block, to piggy back on existing moves
// due to resolution if non-linear control flow (see `ConnectSplitSiblings`).
return Split(interval, block_to->GetLifetimeStart());
}
} // namespace art
|