1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "register_allocator_linear_scan.h"
#include <iostream>
#include <sstream>
#include "base/bit_vector-inl.h"
#include "base/enums.h"
#include "code_generator.h"
#include "linear_order.h"
#include "register_allocation_resolver.h"
#include "ssa_liveness_analysis.h"
namespace art {
static constexpr size_t kMaxLifetimePosition = -1;
static constexpr size_t kDefaultNumberOfSpillSlots = 4;
// For simplicity, we implement register pairs as (reg, reg + 1).
// Note that this is a requirement for double registers on ARM, since we
// allocate SRegister.
static int GetHighForLowRegister(int reg) { return reg + 1; }
static bool IsLowRegister(int reg) { return (reg & 1) == 0; }
static bool IsLowOfUnalignedPairInterval(LiveInterval* low) {
return GetHighForLowRegister(low->GetRegister()) != low->GetHighInterval()->GetRegister();
}
RegisterAllocatorLinearScan::RegisterAllocatorLinearScan(ScopedArenaAllocator* allocator,
CodeGenerator* codegen,
const SsaLivenessAnalysis& liveness)
: RegisterAllocator(allocator, codegen, liveness),
unhandled_core_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
unhandled_fp_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
unhandled_(nullptr),
handled_(allocator->Adapter(kArenaAllocRegisterAllocator)),
active_(allocator->Adapter(kArenaAllocRegisterAllocator)),
inactive_(allocator->Adapter(kArenaAllocRegisterAllocator)),
physical_core_register_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
physical_fp_register_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
temp_intervals_(allocator->Adapter(kArenaAllocRegisterAllocator)),
int_spill_slots_(allocator->Adapter(kArenaAllocRegisterAllocator)),
long_spill_slots_(allocator->Adapter(kArenaAllocRegisterAllocator)),
float_spill_slots_(allocator->Adapter(kArenaAllocRegisterAllocator)),
double_spill_slots_(allocator->Adapter(kArenaAllocRegisterAllocator)),
catch_phi_spill_slots_(0),
safepoints_(allocator->Adapter(kArenaAllocRegisterAllocator)),
processing_core_registers_(false),
number_of_registers_(-1),
registers_array_(nullptr),
blocked_core_registers_(codegen->GetBlockedCoreRegisters()),
blocked_fp_registers_(codegen->GetBlockedFloatingPointRegisters()),
reserved_out_slots_(0) {
temp_intervals_.reserve(4);
int_spill_slots_.reserve(kDefaultNumberOfSpillSlots);
long_spill_slots_.reserve(kDefaultNumberOfSpillSlots);
float_spill_slots_.reserve(kDefaultNumberOfSpillSlots);
double_spill_slots_.reserve(kDefaultNumberOfSpillSlots);
codegen->SetupBlockedRegisters();
physical_core_register_intervals_.resize(codegen->GetNumberOfCoreRegisters(), nullptr);
physical_fp_register_intervals_.resize(codegen->GetNumberOfFloatingPointRegisters(), nullptr);
// Always reserve for the current method and the graph's max out registers.
// TODO: compute it instead.
// ArtMethod* takes 2 vregs for 64 bits.
size_t ptr_size = static_cast<size_t>(InstructionSetPointerSize(codegen->GetInstructionSet()));
reserved_out_slots_ = ptr_size / kVRegSize + codegen->GetGraph()->GetMaximumNumberOfOutVRegs();
}
RegisterAllocatorLinearScan::~RegisterAllocatorLinearScan() {}
static bool ShouldProcess(bool processing_core_registers, LiveInterval* interval) {
if (interval == nullptr) return false;
bool is_core_register = (interval->GetType() != DataType::Type::kFloat64)
&& (interval->GetType() != DataType::Type::kFloat32);
return processing_core_registers == is_core_register;
}
void RegisterAllocatorLinearScan::AllocateRegisters() {
AllocateRegistersInternal();
RegisterAllocationResolver(codegen_, liveness_)
.Resolve(ArrayRef<HInstruction* const>(safepoints_),
reserved_out_slots_,
int_spill_slots_.size(),
long_spill_slots_.size(),
float_spill_slots_.size(),
double_spill_slots_.size(),
catch_phi_spill_slots_,
ArrayRef<LiveInterval* const>(temp_intervals_));
if (kIsDebugBuild) {
processing_core_registers_ = true;
ValidateInternal(true);
processing_core_registers_ = false;
ValidateInternal(true);
// Check that the linear order is still correct with regards to lifetime positions.
// Since only parallel moves have been inserted during the register allocation,
// these checks are mostly for making sure these moves have been added correctly.
size_t current_liveness = 0;
for (HBasicBlock* block : codegen_->GetGraph()->GetLinearOrder()) {
for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
HInstruction* instruction = inst_it.Current();
DCHECK_LE(current_liveness, instruction->GetLifetimePosition());
current_liveness = instruction->GetLifetimePosition();
}
for (HInstructionIterator inst_it(block->GetInstructions());
!inst_it.Done();
inst_it.Advance()) {
HInstruction* instruction = inst_it.Current();
DCHECK_LE(current_liveness, instruction->GetLifetimePosition()) << instruction->DebugName();
current_liveness = instruction->GetLifetimePosition();
}
}
}
}
void RegisterAllocatorLinearScan::BlockRegister(Location location, size_t start, size_t end) {
int reg = location.reg();
DCHECK(location.IsRegister() || location.IsFpuRegister());
LiveInterval* interval = location.IsRegister()
? physical_core_register_intervals_[reg]
: physical_fp_register_intervals_[reg];
DataType::Type type = location.IsRegister()
? DataType::Type::kInt32
: DataType::Type::kFloat32;
if (interval == nullptr) {
interval = LiveInterval::MakeFixedInterval(allocator_, reg, type);
if (location.IsRegister()) {
physical_core_register_intervals_[reg] = interval;
} else {
physical_fp_register_intervals_[reg] = interval;
}
}
DCHECK(interval->GetRegister() == reg);
interval->AddRange(start, end);
}
void RegisterAllocatorLinearScan::BlockRegisters(size_t start, size_t end, bool caller_save_only) {
for (size_t i = 0; i < codegen_->GetNumberOfCoreRegisters(); ++i) {
if (!caller_save_only || !codegen_->IsCoreCalleeSaveRegister(i)) {
BlockRegister(Location::RegisterLocation(i), start, end);
}
}
for (size_t i = 0; i < codegen_->GetNumberOfFloatingPointRegisters(); ++i) {
if (!caller_save_only || !codegen_->IsFloatingPointCalleeSaveRegister(i)) {
BlockRegister(Location::FpuRegisterLocation(i), start, end);
}
}
}
void RegisterAllocatorLinearScan::AllocateRegistersInternal() {
// Iterate post-order, to ensure the list is sorted, and the last added interval
// is the one with the lowest start position.
for (HBasicBlock* block : codegen_->GetGraph()->GetLinearPostOrder()) {
for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
back_it.Advance()) {
ProcessInstruction(back_it.Current());
}
for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
ProcessInstruction(inst_it.Current());
}
if (block->IsCatchBlock() ||
(block->IsLoopHeader() && block->GetLoopInformation()->IsIrreducible())) {
// By blocking all registers at the top of each catch block or irreducible loop, we force
// intervals belonging to the live-in set of the catch/header block to be spilled.
// TODO(ngeoffray): Phis in this block could be allocated in register.
size_t position = block->GetLifetimeStart();
BlockRegisters(position, position + 1);
}
}
number_of_registers_ = codegen_->GetNumberOfCoreRegisters();
registers_array_ = allocator_->AllocArray<size_t>(number_of_registers_,
kArenaAllocRegisterAllocator);
processing_core_registers_ = true;
unhandled_ = &unhandled_core_intervals_;
for (LiveInterval* fixed : physical_core_register_intervals_) {
if (fixed != nullptr) {
// Fixed interval is added to inactive_ instead of unhandled_.
// It's also the only type of inactive interval whose start position
// can be after the current interval during linear scan.
// Fixed interval is never split and never moves to unhandled_.
inactive_.push_back(fixed);
}
}
LinearScan();
inactive_.clear();
active_.clear();
handled_.clear();
number_of_registers_ = codegen_->GetNumberOfFloatingPointRegisters();
registers_array_ = allocator_->AllocArray<size_t>(number_of_registers_,
kArenaAllocRegisterAllocator);
processing_core_registers_ = false;
unhandled_ = &unhandled_fp_intervals_;
for (LiveInterval* fixed : physical_fp_register_intervals_) {
if (fixed != nullptr) {
// Fixed interval is added to inactive_ instead of unhandled_.
// It's also the only type of inactive interval whose start position
// can be after the current interval during linear scan.
// Fixed interval is never split and never moves to unhandled_.
inactive_.push_back(fixed);
}
}
LinearScan();
}
void RegisterAllocatorLinearScan::ProcessInstruction(HInstruction* instruction) {
LocationSummary* locations = instruction->GetLocations();
size_t position = instruction->GetLifetimePosition();
if (locations == nullptr) return;
// Create synthesized intervals for temporaries.
for (size_t i = 0; i < locations->GetTempCount(); ++i) {
Location temp = locations->GetTemp(i);
if (temp.IsRegister() || temp.IsFpuRegister()) {
BlockRegister(temp, position, position + 1);
// Ensure that an explicit temporary register is marked as being allocated.
codegen_->AddAllocatedRegister(temp);
} else {
DCHECK(temp.IsUnallocated());
switch (temp.GetPolicy()) {
case Location::kRequiresRegister: {
LiveInterval* interval =
LiveInterval::MakeTempInterval(allocator_, DataType::Type::kInt32);
temp_intervals_.push_back(interval);
interval->AddTempUse(instruction, i);
unhandled_core_intervals_.push_back(interval);
break;
}
case Location::kRequiresFpuRegister: {
LiveInterval* interval =
LiveInterval::MakeTempInterval(allocator_, DataType::Type::kFloat64);
temp_intervals_.push_back(interval);
interval->AddTempUse(instruction, i);
if (codegen_->NeedsTwoRegisters(DataType::Type::kFloat64)) {
interval->AddHighInterval(/* is_temp= */ true);
LiveInterval* high = interval->GetHighInterval();
temp_intervals_.push_back(high);
unhandled_fp_intervals_.push_back(high);
}
unhandled_fp_intervals_.push_back(interval);
break;
}
default:
LOG(FATAL) << "Unexpected policy for temporary location "
<< temp.GetPolicy();
}
}
}
bool core_register = (instruction->GetType() != DataType::Type::kFloat64)
&& (instruction->GetType() != DataType::Type::kFloat32);
if (locations->NeedsSafepoint()) {
if (codegen_->IsLeafMethod()) {
// TODO: We do this here because we do not want the suspend check to artificially
// create live registers. We should find another place, but this is currently the
// simplest.
DCHECK(instruction->IsSuspendCheckEntry());
instruction->GetBlock()->RemoveInstruction(instruction);
return;
}
safepoints_.push_back(instruction);
}
if (locations->WillCall()) {
BlockRegisters(position, position + 1, /* caller_save_only= */ true);
}
for (size_t i = 0; i < locations->GetInputCount(); ++i) {
Location input = locations->InAt(i);
if (input.IsRegister() || input.IsFpuRegister()) {
BlockRegister(input, position, position + 1);
} else if (input.IsPair()) {
BlockRegister(input.ToLow(), position, position + 1);
BlockRegister(input.ToHigh(), position, position + 1);
}
}
LiveInterval* current = instruction->GetLiveInterval();
if (current == nullptr) return;
ScopedArenaVector<LiveInterval*>& unhandled = core_register
? unhandled_core_intervals_
: unhandled_fp_intervals_;
DCHECK(unhandled.empty() || current->StartsBeforeOrAt(unhandled.back()));
if (codegen_->NeedsTwoRegisters(current->GetType())) {
current->AddHighInterval();
}
for (size_t safepoint_index = safepoints_.size(); safepoint_index > 0; --safepoint_index) {
HInstruction* safepoint = safepoints_[safepoint_index - 1u];
size_t safepoint_position = SafepointPosition::ComputePosition(safepoint);
// Test that safepoints are ordered in the optimal way.
DCHECK(safepoint_index == safepoints_.size() ||
safepoints_[safepoint_index]->GetLifetimePosition() < safepoint_position);
if (safepoint_position == current->GetStart()) {
// The safepoint is for this instruction, so the location of the instruction
// does not need to be saved.
DCHECK_EQ(safepoint_index, safepoints_.size());
DCHECK_EQ(safepoint, instruction);
continue;
} else if (current->IsDeadAt(safepoint_position)) {
break;
} else if (!current->Covers(safepoint_position)) {
// Hole in the interval.
continue;
}
current->AddSafepoint(safepoint);
}
current->ResetSearchCache();
// Some instructions define their output in fixed register/stack slot. We need
// to ensure we know these locations before doing register allocation. For a
// given register, we create an interval that covers these locations. The register
// will be unavailable at these locations when trying to allocate one for an
// interval.
//
// The backwards walking ensures the ranges are ordered on increasing start positions.
Location output = locations->Out();
if (output.IsUnallocated() && output.GetPolicy() == Location::kSameAsFirstInput) {
Location first = locations->InAt(0);
if (first.IsRegister() || first.IsFpuRegister()) {
current->SetFrom(position + 1);
current->SetRegister(first.reg());
} else if (first.IsPair()) {
current->SetFrom(position + 1);
current->SetRegister(first.low());
LiveInterval* high = current->GetHighInterval();
high->SetRegister(first.high());
high->SetFrom(position + 1);
}
} else if (output.IsRegister() || output.IsFpuRegister()) {
// Shift the interval's start by one to account for the blocked register.
current->SetFrom(position + 1);
current->SetRegister(output.reg());
BlockRegister(output, position, position + 1);
} else if (output.IsPair()) {
current->SetFrom(position + 1);
current->SetRegister(output.low());
LiveInterval* high = current->GetHighInterval();
high->SetRegister(output.high());
high->SetFrom(position + 1);
BlockRegister(output.ToLow(), position, position + 1);
BlockRegister(output.ToHigh(), position, position + 1);
} else if (output.IsStackSlot() || output.IsDoubleStackSlot()) {
current->SetSpillSlot(output.GetStackIndex());
} else {
DCHECK(output.IsUnallocated() || output.IsConstant());
}
if (instruction->IsPhi() && instruction->AsPhi()->IsCatchPhi()) {
AllocateSpillSlotForCatchPhi(instruction->AsPhi());
}
// If needed, add interval to the list of unhandled intervals.
if (current->HasSpillSlot() || instruction->IsConstant()) {
// Split just before first register use.
size_t first_register_use = current->FirstRegisterUse();
if (first_register_use != kNoLifetime) {
LiveInterval* split = SplitBetween(current, current->GetStart(), first_register_use - 1);
// Don't add directly to `unhandled`, it needs to be sorted and the start
// of this new interval might be after intervals already in the list.
AddSorted(&unhandled, split);
} else {
// Nothing to do, we won't allocate a register for this value.
}
} else {
// Don't add directly to `unhandled`, temp or safepoint intervals
// for this instruction may have been added, and those can be
// processed first.
AddSorted(&unhandled, current);
}
}
class AllRangesIterator : public ValueObject {
public:
explicit AllRangesIterator(LiveInterval* interval)
: current_interval_(interval),
current_range_(interval->GetFirstRange()) {}
bool Done() const { return current_interval_ == nullptr; }
LiveRange* CurrentRange() const { return current_range_; }
LiveInterval* CurrentInterval() const { return current_interval_; }
void Advance() {
current_range_ = current_range_->GetNext();
if (current_range_ == nullptr) {
current_interval_ = current_interval_->GetNextSibling();
if (current_interval_ != nullptr) {
current_range_ = current_interval_->GetFirstRange();
}
}
}
private:
LiveInterval* current_interval_;
LiveRange* current_range_;
DISALLOW_COPY_AND_ASSIGN(AllRangesIterator);
};
bool RegisterAllocatorLinearScan::ValidateInternal(bool log_fatal_on_failure) const {
// To simplify unit testing, we eagerly create the array of intervals, and
// call the helper method.
ScopedArenaAllocator allocator(allocator_->GetArenaStack());
ScopedArenaVector<LiveInterval*> intervals(
allocator.Adapter(kArenaAllocRegisterAllocatorValidate));
for (size_t i = 0; i < liveness_.GetNumberOfSsaValues(); ++i) {
HInstruction* instruction = liveness_.GetInstructionFromSsaIndex(i);
if (ShouldProcess(processing_core_registers_, instruction->GetLiveInterval())) {
intervals.push_back(instruction->GetLiveInterval());
}
}
const ScopedArenaVector<LiveInterval*>* physical_register_intervals = processing_core_registers_
? &physical_core_register_intervals_
: &physical_fp_register_intervals_;
for (LiveInterval* fixed : *physical_register_intervals) {
if (fixed != nullptr) {
intervals.push_back(fixed);
}
}
for (LiveInterval* temp : temp_intervals_) {
if (ShouldProcess(processing_core_registers_, temp)) {
intervals.push_back(temp);
}
}
return ValidateIntervals(ArrayRef<LiveInterval* const>(intervals),
GetNumberOfSpillSlots(),
reserved_out_slots_,
*codegen_,
processing_core_registers_,
log_fatal_on_failure);
}
void RegisterAllocatorLinearScan::DumpInterval(std::ostream& stream, LiveInterval* interval) const {
interval->Dump(stream);
stream << ": ";
if (interval->HasRegister()) {
if (interval->IsFloatingPoint()) {
codegen_->DumpFloatingPointRegister(stream, interval->GetRegister());
} else {
codegen_->DumpCoreRegister(stream, interval->GetRegister());
}
} else {
stream << "spilled";
}
stream << std::endl;
}
void RegisterAllocatorLinearScan::DumpAllIntervals(std::ostream& stream) const {
stream << "inactive: " << std::endl;
for (LiveInterval* inactive_interval : inactive_) {
DumpInterval(stream, inactive_interval);
}
stream << "active: " << std::endl;
for (LiveInterval* active_interval : active_) {
DumpInterval(stream, active_interval);
}
stream << "unhandled: " << std::endl;
auto unhandled = (unhandled_ != nullptr) ?
unhandled_ : &unhandled_core_intervals_;
for (LiveInterval* unhandled_interval : *unhandled) {
DumpInterval(stream, unhandled_interval);
}
stream << "handled: " << std::endl;
for (LiveInterval* handled_interval : handled_) {
DumpInterval(stream, handled_interval);
}
}
// By the book implementation of a linear scan register allocator.
void RegisterAllocatorLinearScan::LinearScan() {
while (!unhandled_->empty()) {
// (1) Remove interval with the lowest start position from unhandled.
LiveInterval* current = unhandled_->back();
unhandled_->pop_back();
// Make sure the interval is an expected state.
DCHECK(!current->IsFixed() && !current->HasSpillSlot());
// Make sure we are going in the right order.
DCHECK(unhandled_->empty() || unhandled_->back()->GetStart() >= current->GetStart());
// Make sure a low interval is always with a high.
DCHECK(!current->IsLowInterval() || unhandled_->back()->IsHighInterval());
// Make sure a high interval is always with a low.
DCHECK(current->IsLowInterval() ||
unhandled_->empty() ||
!unhandled_->back()->IsHighInterval());
size_t position = current->GetStart();
// Remember the inactive_ size here since the ones moved to inactive_ from
// active_ below shouldn't need to be re-checked.
size_t inactive_intervals_to_handle = inactive_.size();
// (2) Remove currently active intervals that are dead at this position.
// Move active intervals that have a lifetime hole at this position
// to inactive.
auto active_kept_end = std::remove_if(
active_.begin(),
active_.end(),
[this, position](LiveInterval* interval) {
if (interval->IsDeadAt(position)) {
handled_.push_back(interval);
return true;
} else if (!interval->Covers(position)) {
inactive_.push_back(interval);
return true;
} else {
return false; // Keep this interval.
}
});
active_.erase(active_kept_end, active_.end());
// (3) Remove currently inactive intervals that are dead at this position.
// Move inactive intervals that cover this position to active.
auto inactive_to_handle_end = inactive_.begin() + inactive_intervals_to_handle;
auto inactive_kept_end = std::remove_if(
inactive_.begin(),
inactive_to_handle_end,
[this, position](LiveInterval* interval) {
DCHECK(interval->GetStart() < position || interval->IsFixed());
if (interval->IsDeadAt(position)) {
handled_.push_back(interval);
return true;
} else if (interval->Covers(position)) {
active_.push_back(interval);
return true;
} else {
return false; // Keep this interval.
}
});
inactive_.erase(inactive_kept_end, inactive_to_handle_end);
if (current->IsHighInterval() && !current->GetLowInterval()->HasRegister()) {
DCHECK(!current->HasRegister());
// Allocating the low part was unsucessful. The splitted interval for the high part
// will be handled next (it is in the `unhandled_` list).
continue;
}
// (4) Try to find an available register.
bool success = TryAllocateFreeReg(current);
// (5) If no register could be found, we need to spill.
if (!success) {
success = AllocateBlockedReg(current);
}
// (6) If the interval had a register allocated, add it to the list of active
// intervals.
if (success) {
codegen_->AddAllocatedRegister(processing_core_registers_
? Location::RegisterLocation(current->GetRegister())
: Location::FpuRegisterLocation(current->GetRegister()));
active_.push_back(current);
if (current->HasHighInterval() && !current->GetHighInterval()->HasRegister()) {
current->GetHighInterval()->SetRegister(GetHighForLowRegister(current->GetRegister()));
}
}
}
}
static void FreeIfNotCoverAt(LiveInterval* interval, size_t position, size_t* free_until) {
DCHECK(!interval->IsHighInterval());
// Note that the same instruction may occur multiple times in the input list,
// so `free_until` may have changed already.
// Since `position` is not the current scan position, we need to use CoversSlow.
if (interval->IsDeadAt(position)) {
// Set the register to be free. Note that inactive intervals might later
// update this.
free_until[interval->GetRegister()] = kMaxLifetimePosition;
if (interval->HasHighInterval()) {
DCHECK(interval->GetHighInterval()->IsDeadAt(position));
free_until[interval->GetHighInterval()->GetRegister()] = kMaxLifetimePosition;
}
} else if (!interval->CoversSlow(position)) {
// The interval becomes inactive at `defined_by`. We make its register
// available only until the next use strictly after `defined_by`.
free_until[interval->GetRegister()] = interval->FirstUseAfter(position);
if (interval->HasHighInterval()) {
DCHECK(!interval->GetHighInterval()->CoversSlow(position));
free_until[interval->GetHighInterval()->GetRegister()] = free_until[interval->GetRegister()];
}
}
}
// Find a free register. If multiple are found, pick the register that
// is free the longest.
bool RegisterAllocatorLinearScan::TryAllocateFreeReg(LiveInterval* current) {
size_t* free_until = registers_array_;
// First set all registers to be free.
for (size_t i = 0; i < number_of_registers_; ++i) {
free_until[i] = kMaxLifetimePosition;
}
// For each active interval, set its register to not free.
for (LiveInterval* interval : active_) {
DCHECK(interval->HasRegister());
free_until[interval->GetRegister()] = 0;
}
// An interval that starts an instruction (that is, it is not split), may
// re-use the registers used by the inputs of that instruciton, based on the
// location summary.
HInstruction* defined_by = current->GetDefinedBy();
if (defined_by != nullptr && !current->IsSplit()) {
LocationSummary* locations = defined_by->GetLocations();
if (!locations->OutputCanOverlapWithInputs() && locations->Out().IsUnallocated()) {
HInputsRef inputs = defined_by->GetInputs();
for (size_t i = 0; i < inputs.size(); ++i) {
if (locations->InAt(i).IsValid()) {
// Take the last interval of the input. It is the location of that interval
// that will be used at `defined_by`.
LiveInterval* interval = inputs[i]->GetLiveInterval()->GetLastSibling();
// Note that interval may have not been processed yet.
// TODO: Handle non-split intervals last in the work list.
if (interval->HasRegister() && interval->SameRegisterKind(*current)) {
// The input must be live until the end of `defined_by`, to comply to
// the linear scan algorithm. So we use `defined_by`'s end lifetime
// position to check whether the input is dead or is inactive after
// `defined_by`.
DCHECK(interval->CoversSlow(defined_by->GetLifetimePosition()));
size_t position = defined_by->GetLifetimePosition() + 1;
FreeIfNotCoverAt(interval, position, free_until);
}
}
}
}
}
// For each inactive interval, set its register to be free until
// the next intersection with `current`.
for (LiveInterval* inactive : inactive_) {
// Temp/Slow-path-safepoint interval has no holes.
DCHECK(!inactive->IsTemp());
if (!current->IsSplit() && !inactive->IsFixed()) {
// Neither current nor inactive are fixed.
// Thanks to SSA, a non-split interval starting in a hole of an
// inactive interval should never intersect with that inactive interval.
// Only if it's not fixed though, because fixed intervals don't come from SSA.
DCHECK_EQ(inactive->FirstIntersectionWith(current), kNoLifetime);
continue;
}
DCHECK(inactive->HasRegister());
if (free_until[inactive->GetRegister()] == 0) {
// Already used by some active interval. No need to intersect.
continue;
}
size_t next_intersection = inactive->FirstIntersectionWith(current);
if (next_intersection != kNoLifetime) {
free_until[inactive->GetRegister()] =
std::min(free_until[inactive->GetRegister()], next_intersection);
}
}
int reg = kNoRegister;
if (current->HasRegister()) {
// Some instructions have a fixed register output.
reg = current->GetRegister();
if (free_until[reg] == 0) {
DCHECK(current->IsHighInterval());
// AllocateBlockedReg will spill the holder of the register.
return false;
}
} else {
DCHECK(!current->IsHighInterval());
int hint = current->FindFirstRegisterHint(free_until, liveness_);
if ((hint != kNoRegister)
// For simplicity, if the hint we are getting for a pair cannot be used,
// we are just going to allocate a new pair.
&& !(current->IsLowInterval() && IsBlocked(GetHighForLowRegister(hint)))) {
DCHECK(!IsBlocked(hint));
reg = hint;
} else if (current->IsLowInterval()) {
reg = FindAvailableRegisterPair(free_until, current->GetStart());
} else {
reg = FindAvailableRegister(free_until, current);
}
}
DCHECK_NE(reg, kNoRegister);
// If we could not find a register, we need to spill.
if (free_until[reg] == 0) {
return false;
}
if (current->IsLowInterval()) {
// If the high register of this interval is not available, we need to spill.
int high_reg = current->GetHighInterval()->GetRegister();
if (high_reg == kNoRegister) {
high_reg = GetHighForLowRegister(reg);
}
if (free_until[high_reg] == 0) {
return false;
}
}
current->SetRegister(reg);
if (!current->IsDeadAt(free_until[reg])) {
// If the register is only available for a subset of live ranges
// covered by `current`, split `current` before the position where
// the register is not available anymore.
LiveInterval* split = SplitBetween(current, current->GetStart(), free_until[reg]);
DCHECK(split != nullptr);
AddSorted(unhandled_, split);
}
return true;
}
bool RegisterAllocatorLinearScan::IsBlocked(int reg) const {
return processing_core_registers_
? blocked_core_registers_[reg]
: blocked_fp_registers_[reg];
}
int RegisterAllocatorLinearScan::FindAvailableRegisterPair(size_t* next_use, size_t starting_at) const {
int reg = kNoRegister;
// Pick the register pair that is used the last.
for (size_t i = 0; i < number_of_registers_; ++i) {
if (IsBlocked(i)) continue;
if (!IsLowRegister(i)) continue;
int high_register = GetHighForLowRegister(i);
if (IsBlocked(high_register)) continue;
int existing_high_register = GetHighForLowRegister(reg);
if ((reg == kNoRegister) || (next_use[i] >= next_use[reg]
&& next_use[high_register] >= next_use[existing_high_register])) {
reg = i;
if (next_use[i] == kMaxLifetimePosition
&& next_use[high_register] == kMaxLifetimePosition) {
break;
}
} else if (next_use[reg] <= starting_at || next_use[existing_high_register] <= starting_at) {
// If one of the current register is known to be unavailable, just unconditionally
// try a new one.
reg = i;
}
}
return reg;
}
bool RegisterAllocatorLinearScan::IsCallerSaveRegister(int reg) const {
return processing_core_registers_
? !codegen_->IsCoreCalleeSaveRegister(reg)
: !codegen_->IsFloatingPointCalleeSaveRegister(reg);
}
int RegisterAllocatorLinearScan::FindAvailableRegister(size_t* next_use, LiveInterval* current) const {
// We special case intervals that do not span a safepoint to try to find a caller-save
// register if one is available. We iterate from 0 to the number of registers,
// so if there are caller-save registers available at the end, we continue the iteration.
bool prefers_caller_save = !current->HasWillCallSafepoint();
int reg = kNoRegister;
for (size_t i = 0; i < number_of_registers_; ++i) {
if (IsBlocked(i)) {
// Register cannot be used. Continue.
continue;
}
// Best case: we found a register fully available.
if (next_use[i] == kMaxLifetimePosition) {
if (prefers_caller_save && !IsCallerSaveRegister(i)) {
// We can get shorter encodings on some platforms by using
// small register numbers. So only update the candidate if the previous
// one was not available for the whole method.
if (reg == kNoRegister || next_use[reg] != kMaxLifetimePosition) {
reg = i;
}
// Continue the iteration in the hope of finding a caller save register.
continue;
} else {
reg = i;
// We know the register is good enough. Return it.
break;
}
}
// If we had no register before, take this one as a reference.
if (reg == kNoRegister) {
reg = i;
continue;
}
// Pick the register that is used the last.
if (next_use[i] > next_use[reg]) {
reg = i;
continue;
}
}
return reg;
}
// Remove interval and its other half if any. Return iterator to the following element.
static ArenaVector<LiveInterval*>::iterator RemoveIntervalAndPotentialOtherHalf(
ScopedArenaVector<LiveInterval*>* intervals, ScopedArenaVector<LiveInterval*>::iterator pos) {
DCHECK(intervals->begin() <= pos && pos < intervals->end());
LiveInterval* interval = *pos;
if (interval->IsLowInterval()) {
DCHECK(pos + 1 < intervals->end());
DCHECK_EQ(*(pos + 1), interval->GetHighInterval());
return intervals->erase(pos, pos + 2);
} else if (interval->IsHighInterval()) {
DCHECK(intervals->begin() < pos);
DCHECK_EQ(*(pos - 1), interval->GetLowInterval());
return intervals->erase(pos - 1, pos + 1);
} else {
return intervals->erase(pos);
}
}
bool RegisterAllocatorLinearScan::TrySplitNonPairOrUnalignedPairIntervalAt(size_t position,
size_t first_register_use,
size_t* next_use) {
for (auto it = active_.begin(), end = active_.end(); it != end; ++it) {
LiveInterval* active = *it;
DCHECK(active->HasRegister());
if (active->IsFixed()) continue;
if (active->IsHighInterval()) continue;
if (first_register_use > next_use[active->GetRegister()]) continue;
// Split the first interval found that is either:
// 1) A non-pair interval.
// 2) A pair interval whose high is not low + 1.
// 3) A pair interval whose low is not even.
if (!active->IsLowInterval() ||
IsLowOfUnalignedPairInterval(active) ||
!IsLowRegister(active->GetRegister())) {
LiveInterval* split = Split(active, position);
if (split != active) {
handled_.push_back(active);
}
RemoveIntervalAndPotentialOtherHalf(&active_, it);
AddSorted(unhandled_, split);
return true;
}
}
return false;
}
// Find the register that is used the last, and spill the interval
// that holds it. If the first use of `current` is after that register
// we spill `current` instead.
bool RegisterAllocatorLinearScan::AllocateBlockedReg(LiveInterval* current) {
size_t first_register_use = current->FirstRegisterUse();
if (current->HasRegister()) {
DCHECK(current->IsHighInterval());
// The low interval has allocated the register for the high interval. In
// case the low interval had to split both intervals, we may end up in a
// situation where the high interval does not have a register use anymore.
// We must still proceed in order to split currently active and inactive
// uses of the high interval's register, and put the high interval in the
// active set.
DCHECK(first_register_use != kNoLifetime || (current->GetNextSibling() != nullptr));
} else if (first_register_use == kNoLifetime) {
AllocateSpillSlotFor(current);
return false;
}
// First set all registers as not being used.
size_t* next_use = registers_array_;
for (size_t i = 0; i < number_of_registers_; ++i) {
next_use[i] = kMaxLifetimePosition;
}
// For each active interval, find the next use of its register after the
// start of current.
for (LiveInterval* active : active_) {
DCHECK(active->HasRegister());
if (active->IsFixed()) {
next_use[active->GetRegister()] = current->GetStart();
} else {
size_t use = active->FirstRegisterUseAfter(current->GetStart());
if (use != kNoLifetime) {
next_use[active->GetRegister()] = use;
}
}
}
// For each inactive interval, find the next use of its register after the
// start of current.
for (LiveInterval* inactive : inactive_) {
// Temp/Slow-path-safepoint interval has no holes.
DCHECK(!inactive->IsTemp());
if (!current->IsSplit() && !inactive->IsFixed()) {
// Neither current nor inactive are fixed.
// Thanks to SSA, a non-split interval starting in a hole of an
// inactive interval should never intersect with that inactive interval.
// Only if it's not fixed though, because fixed intervals don't come from SSA.
DCHECK_EQ(inactive->FirstIntersectionWith(current), kNoLifetime);
continue;
}
DCHECK(inactive->HasRegister());
size_t next_intersection = inactive->FirstIntersectionWith(current);
if (next_intersection != kNoLifetime) {
if (inactive->IsFixed()) {
next_use[inactive->GetRegister()] =
std::min(next_intersection, next_use[inactive->GetRegister()]);
} else {
size_t use = inactive->FirstUseAfter(current->GetStart());
if (use != kNoLifetime) {
next_use[inactive->GetRegister()] = std::min(use, next_use[inactive->GetRegister()]);
}
}
}
}
int reg = kNoRegister;
bool should_spill = false;
if (current->HasRegister()) {
DCHECK(current->IsHighInterval());
reg = current->GetRegister();
// When allocating the low part, we made sure the high register was available.
DCHECK_LT(first_register_use, next_use[reg]);
} else if (current->IsLowInterval()) {
reg = FindAvailableRegisterPair(next_use, first_register_use);
// We should spill if both registers are not available.
should_spill = (first_register_use >= next_use[reg])
|| (first_register_use >= next_use[GetHighForLowRegister(reg)]);
} else {
DCHECK(!current->IsHighInterval());
reg = FindAvailableRegister(next_use, current);
should_spill = (first_register_use >= next_use[reg]);
}
DCHECK_NE(reg, kNoRegister);
if (should_spill) {
DCHECK(!current->IsHighInterval());
bool is_allocation_at_use_site = (current->GetStart() >= (first_register_use - 1));
if (is_allocation_at_use_site) {
if (!current->IsLowInterval()) {
DumpInterval(std::cerr, current);
DumpAllIntervals(std::cerr);
// This situation has the potential to infinite loop, so we make it a non-debug CHECK.
HInstruction* at = liveness_.GetInstructionFromPosition(first_register_use / 2);
CHECK(false) << "There is not enough registers available for "
<< current->GetParent()->GetDefinedBy()->DebugName() << " "
<< current->GetParent()->GetDefinedBy()->GetId()
<< " at " << first_register_use - 1 << " "
<< (at == nullptr ? "" : at->DebugName());
}
// If we're allocating a register for `current` because the instruction at
// that position requires it, but we think we should spill, then there are
// non-pair intervals or unaligned pair intervals blocking the allocation.
// We split the first interval found, and put ourselves first in the
// `unhandled_` list.
bool success = TrySplitNonPairOrUnalignedPairIntervalAt(current->GetStart(),
first_register_use,
next_use);
DCHECK(success);
LiveInterval* existing = unhandled_->back();
DCHECK(existing->IsHighInterval());
DCHECK_EQ(existing->GetLowInterval(), current);
unhandled_->push_back(current);
} else {
// If the first use of that instruction is after the last use of the found
// register, we split this interval just before its first register use.
AllocateSpillSlotFor(current);
LiveInterval* split = SplitBetween(current, current->GetStart(), first_register_use - 1);
DCHECK(current != split);
AddSorted(unhandled_, split);
}
return false;
} else {
// Use this register and spill the active and inactives interval that
// have that register.
current->SetRegister(reg);
for (auto it = active_.begin(), end = active_.end(); it != end; ++it) {
LiveInterval* active = *it;
if (active->GetRegister() == reg) {
DCHECK(!active->IsFixed());
LiveInterval* split = Split(active, current->GetStart());
if (split != active) {
handled_.push_back(active);
}
RemoveIntervalAndPotentialOtherHalf(&active_, it);
AddSorted(unhandled_, split);
break;
}
}
// NOTE: Retrieve end() on each iteration because we're removing elements in the loop body.
for (auto it = inactive_.begin(); it != inactive_.end(); ) {
LiveInterval* inactive = *it;
bool erased = false;
if (inactive->GetRegister() == reg) {
if (!current->IsSplit() && !inactive->IsFixed()) {
// Neither current nor inactive are fixed.
// Thanks to SSA, a non-split interval starting in a hole of an
// inactive interval should never intersect with that inactive interval.
// Only if it's not fixed though, because fixed intervals don't come from SSA.
DCHECK_EQ(inactive->FirstIntersectionWith(current), kNoLifetime);
} else {
size_t next_intersection = inactive->FirstIntersectionWith(current);
if (next_intersection != kNoLifetime) {
if (inactive->IsFixed()) {
LiveInterval* split = Split(current, next_intersection);
DCHECK_NE(split, current);
AddSorted(unhandled_, split);
} else {
// Split at the start of `current`, which will lead to splitting
// at the end of the lifetime hole of `inactive`.
LiveInterval* split = Split(inactive, current->GetStart());
// If it's inactive, it must start before the current interval.
DCHECK_NE(split, inactive);
it = RemoveIntervalAndPotentialOtherHalf(&inactive_, it);
erased = true;
handled_.push_back(inactive);
AddSorted(unhandled_, split);
}
}
}
}
// If we have erased the element, `it` already points to the next element.
// Otherwise we need to move to the next element.
if (!erased) {
++it;
}
}
return true;
}
}
void RegisterAllocatorLinearScan::AddSorted(ScopedArenaVector<LiveInterval*>* array,
LiveInterval* interval) {
DCHECK(!interval->IsFixed() && !interval->HasSpillSlot());
size_t insert_at = 0;
for (size_t i = array->size(); i > 0; --i) {
LiveInterval* current = (*array)[i - 1u];
// High intervals must be processed right after their low equivalent.
if (current->StartsAfter(interval) && !current->IsHighInterval()) {
insert_at = i;
break;
}
}
// Insert the high interval before the low, to ensure the low is processed before.
auto insert_pos = array->begin() + insert_at;
if (interval->HasHighInterval()) {
array->insert(insert_pos, { interval->GetHighInterval(), interval });
} else if (interval->HasLowInterval()) {
array->insert(insert_pos, { interval, interval->GetLowInterval() });
} else {
array->insert(insert_pos, interval);
}
}
void RegisterAllocatorLinearScan::AllocateSpillSlotFor(LiveInterval* interval) {
if (interval->IsHighInterval()) {
// The low interval already took care of allocating the spill slot.
DCHECK(!interval->GetLowInterval()->HasRegister());
DCHECK(interval->GetLowInterval()->GetParent()->HasSpillSlot());
return;
}
LiveInterval* parent = interval->GetParent();
// An instruction gets a spill slot for its entire lifetime. If the parent
// of this interval already has a spill slot, there is nothing to do.
if (parent->HasSpillSlot()) {
return;
}
HInstruction* defined_by = parent->GetDefinedBy();
DCHECK(!defined_by->IsPhi() || !defined_by->AsPhi()->IsCatchPhi());
if (defined_by->IsParameterValue()) {
// Parameters have their own stack slot.
parent->SetSpillSlot(codegen_->GetStackSlotOfParameter(defined_by->AsParameterValue()));
return;
}
if (defined_by->IsCurrentMethod()) {
parent->SetSpillSlot(0);
return;
}
if (defined_by->IsConstant()) {
// Constants don't need a spill slot.
return;
}
ScopedArenaVector<size_t>* spill_slots = nullptr;
switch (interval->GetType()) {
case DataType::Type::kFloat64:
spill_slots = &double_spill_slots_;
break;
case DataType::Type::kInt64:
spill_slots = &long_spill_slots_;
break;
case DataType::Type::kFloat32:
spill_slots = &float_spill_slots_;
break;
case DataType::Type::kReference:
case DataType::Type::kInt32:
case DataType::Type::kUint16:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kBool:
case DataType::Type::kInt16:
spill_slots = &int_spill_slots_;
break;
case DataType::Type::kUint32:
case DataType::Type::kUint64:
case DataType::Type::kVoid:
LOG(FATAL) << "Unexpected type for interval " << interval->GetType();
}
// Find first available spill slots.
size_t number_of_spill_slots_needed = parent->NumberOfSpillSlotsNeeded();
size_t slot = 0;
for (size_t e = spill_slots->size(); slot < e; ++slot) {
bool found = true;
for (size_t s = slot, u = std::min(slot + number_of_spill_slots_needed, e); s < u; s++) {
if ((*spill_slots)[s] > parent->GetStart()) {
found = false; // failure
break;
}
}
if (found) {
break; // success
}
}
// Need new spill slots?
size_t upper = slot + number_of_spill_slots_needed;
if (upper > spill_slots->size()) {
spill_slots->resize(upper);
}
// Set slots to end.
size_t end = interval->GetLastSibling()->GetEnd();
for (size_t s = slot; s < upper; s++) {
(*spill_slots)[s] = end;
}
// Note that the exact spill slot location will be computed when we resolve,
// that is when we know the number of spill slots for each type.
parent->SetSpillSlot(slot);
}
void RegisterAllocatorLinearScan::AllocateSpillSlotForCatchPhi(HPhi* phi) {
LiveInterval* interval = phi->GetLiveInterval();
HInstruction* previous_phi = phi->GetPrevious();
DCHECK(previous_phi == nullptr ||
previous_phi->AsPhi()->GetRegNumber() <= phi->GetRegNumber())
<< "Phis expected to be sorted by vreg number, so that equivalent phis are adjacent.";
if (phi->IsVRegEquivalentOf(previous_phi)) {
// This is an equivalent of the previous phi. We need to assign the same
// catch phi slot.
DCHECK(previous_phi->GetLiveInterval()->HasSpillSlot());
interval->SetSpillSlot(previous_phi->GetLiveInterval()->GetSpillSlot());
} else {
// Allocate a new spill slot for this catch phi.
// TODO: Reuse spill slots when intervals of phis from different catch
// blocks do not overlap.
interval->SetSpillSlot(catch_phi_spill_slots_);
catch_phi_spill_slots_ += interval->NumberOfSpillSlotsNeeded();
}
}
} // namespace art
|