1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "register_allocator.h"
#include "arch/x86/instruction_set_features_x86.h"
#include "base/arena_allocator.h"
#include "builder.h"
#include "code_generator.h"
#include "code_generator_x86.h"
#include "dex/dex_file.h"
#include "dex/dex_file_types.h"
#include "dex/dex_instruction.h"
#include "driver/compiler_options.h"
#include "nodes.h"
#include "optimizing_unit_test.h"
#include "register_allocator_linear_scan.h"
#include "ssa_liveness_analysis.h"
#include "ssa_phi_elimination.h"
namespace art {
using Strategy = RegisterAllocator::Strategy;
// Note: the register allocator tests rely on the fact that constants have live
// intervals and registers get allocated to them.
class RegisterAllocatorTest : public OptimizingUnitTest {
protected:
void SetUp() override {
// This test is using the x86 ISA.
OverrideInstructionSetFeatures(InstructionSet::kX86, "default");
OptimizingUnitTest::SetUp();
}
// These functions need to access private variables of LocationSummary, so we declare it
// as a member of RegisterAllocatorTest, which we make a friend class.
void SameAsFirstInputHint(Strategy strategy);
void ExpectedInRegisterHint(Strategy strategy);
// Helper functions that make use of the OptimizingUnitTest's members.
bool Check(const std::vector<uint16_t>& data, Strategy strategy);
void CFG1(Strategy strategy);
void Loop1(Strategy strategy);
void Loop2(Strategy strategy);
void Loop3(Strategy strategy);
void DeadPhi(Strategy strategy);
HGraph* BuildIfElseWithPhi(HPhi** phi, HInstruction** input1, HInstruction** input2);
void PhiHint(Strategy strategy);
HGraph* BuildFieldReturn(HInstruction** field, HInstruction** ret);
HGraph* BuildTwoSubs(HInstruction** first_sub, HInstruction** second_sub);
HGraph* BuildDiv(HInstruction** div);
void ExpectedExactInRegisterAndSameOutputHint(Strategy strategy);
bool ValidateIntervals(const ScopedArenaVector<LiveInterval*>& intervals,
const CodeGenerator& codegen) {
return RegisterAllocator::ValidateIntervals(ArrayRef<LiveInterval* const>(intervals),
/* number_of_spill_slots= */ 0u,
/* number_of_out_slots= */ 0u,
codegen,
/* processing_core_registers= */ true,
/* log_fatal_on_failure= */ false);
}
};
// This macro should include all register allocation strategies that should be tested.
#define TEST_ALL_STRATEGIES(test_name)\
TEST_F(RegisterAllocatorTest, test_name##_LinearScan) {\
test_name(Strategy::kRegisterAllocatorLinearScan);\
}\
TEST_F(RegisterAllocatorTest, test_name##_GraphColor) {\
test_name(Strategy::kRegisterAllocatorGraphColor);\
}
bool RegisterAllocatorTest::Check(const std::vector<uint16_t>& data, Strategy strategy) {
HGraph* graph = CreateCFG(data);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
return register_allocator->Validate(false);
}
/**
* Unit testing of RegisterAllocator::ValidateIntervals. Register allocator
* tests are based on this validation method.
*/
TEST_F(RegisterAllocatorTest, ValidateIntervals) {
HGraph* graph = CreateGraph();
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
ScopedArenaVector<LiveInterval*> intervals(GetScopedAllocator()->Adapter());
// Test with two intervals of the same range.
{
static constexpr size_t ranges[][2] = {{0, 42}};
intervals.push_back(BuildInterval(ranges, arraysize(ranges), GetScopedAllocator(), 0));
intervals.push_back(BuildInterval(ranges, arraysize(ranges), GetScopedAllocator(), 1));
ASSERT_TRUE(ValidateIntervals(intervals, codegen));
intervals[1]->SetRegister(0);
ASSERT_FALSE(ValidateIntervals(intervals, codegen));
intervals.clear();
}
// Test with two non-intersecting intervals.
{
static constexpr size_t ranges1[][2] = {{0, 42}};
intervals.push_back(BuildInterval(ranges1, arraysize(ranges1), GetScopedAllocator(), 0));
static constexpr size_t ranges2[][2] = {{42, 43}};
intervals.push_back(BuildInterval(ranges2, arraysize(ranges2), GetScopedAllocator(), 1));
ASSERT_TRUE(ValidateIntervals(intervals, codegen));
intervals[1]->SetRegister(0);
ASSERT_TRUE(ValidateIntervals(intervals, codegen));
intervals.clear();
}
// Test with two non-intersecting intervals, with one with a lifetime hole.
{
static constexpr size_t ranges1[][2] = {{0, 42}, {45, 48}};
intervals.push_back(BuildInterval(ranges1, arraysize(ranges1), GetScopedAllocator(), 0));
static constexpr size_t ranges2[][2] = {{42, 43}};
intervals.push_back(BuildInterval(ranges2, arraysize(ranges2), GetScopedAllocator(), 1));
ASSERT_TRUE(ValidateIntervals(intervals, codegen));
intervals[1]->SetRegister(0);
ASSERT_TRUE(ValidateIntervals(intervals, codegen));
intervals.clear();
}
// Test with intersecting intervals.
{
static constexpr size_t ranges1[][2] = {{0, 42}, {44, 48}};
intervals.push_back(BuildInterval(ranges1, arraysize(ranges1), GetScopedAllocator(), 0));
static constexpr size_t ranges2[][2] = {{42, 47}};
intervals.push_back(BuildInterval(ranges2, arraysize(ranges2), GetScopedAllocator(), 1));
ASSERT_TRUE(ValidateIntervals(intervals, codegen));
intervals[1]->SetRegister(0);
ASSERT_FALSE(ValidateIntervals(intervals, codegen));
intervals.clear();
}
// Test with siblings.
{
static constexpr size_t ranges1[][2] = {{0, 42}, {44, 48}};
intervals.push_back(BuildInterval(ranges1, arraysize(ranges1), GetScopedAllocator(), 0));
intervals[0]->SplitAt(43);
static constexpr size_t ranges2[][2] = {{42, 47}};
intervals.push_back(BuildInterval(ranges2, arraysize(ranges2), GetScopedAllocator(), 1));
ASSERT_TRUE(ValidateIntervals(intervals, codegen));
intervals[1]->SetRegister(0);
// Sibling of the first interval has no register allocated to it.
ASSERT_TRUE(ValidateIntervals(intervals, codegen));
intervals[0]->GetNextSibling()->SetRegister(0);
ASSERT_FALSE(ValidateIntervals(intervals, codegen));
}
}
void RegisterAllocatorTest::CFG1(Strategy strategy) {
/*
* Test the following snippet:
* return 0;
*
* Which becomes the following graph:
* constant0
* goto
* |
* return
* |
* exit
*/
const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::RETURN);
ASSERT_TRUE(Check(data, strategy));
}
TEST_ALL_STRATEGIES(CFG1);
void RegisterAllocatorTest::Loop1(Strategy strategy) {
/*
* Test the following snippet:
* int a = 0;
* while (a == a) {
* a = 4;
* }
* return 5;
*
* Which becomes the following graph:
* constant0
* constant4
* constant5
* goto
* |
* goto
* |
* phi
* equal
* if +++++
* | \ +
* | goto
* |
* return
* |
* exit
*/
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::IF_EQ, 4,
Instruction::CONST_4 | 4 << 12 | 0,
Instruction::GOTO | 0xFD00,
Instruction::CONST_4 | 5 << 12 | 1 << 8,
Instruction::RETURN | 1 << 8);
ASSERT_TRUE(Check(data, strategy));
}
TEST_ALL_STRATEGIES(Loop1);
void RegisterAllocatorTest::Loop2(Strategy strategy) {
/*
* Test the following snippet:
* int a = 0;
* while (a == 8) {
* a = 4 + 5;
* }
* return 6 + 7;
*
* Which becomes the following graph:
* constant0
* constant4
* constant5
* constant6
* constant7
* constant8
* goto
* |
* goto
* |
* phi
* equal
* if +++++
* | \ +
* | 4 + 5
* | goto
* |
* 6 + 7
* return
* |
* exit
*/
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::CONST_4 | 8 << 12 | 1 << 8,
Instruction::IF_EQ | 1 << 8, 7,
Instruction::CONST_4 | 4 << 12 | 0 << 8,
Instruction::CONST_4 | 5 << 12 | 1 << 8,
Instruction::ADD_INT, 1 << 8 | 0,
Instruction::GOTO | 0xFA00,
Instruction::CONST_4 | 6 << 12 | 1 << 8,
Instruction::CONST_4 | 7 << 12 | 1 << 8,
Instruction::ADD_INT, 1 << 8 | 0,
Instruction::RETURN | 1 << 8);
ASSERT_TRUE(Check(data, strategy));
}
TEST_ALL_STRATEGIES(Loop2);
void RegisterAllocatorTest::Loop3(Strategy strategy) {
/*
* Test the following snippet:
* int a = 0
* do {
* b = a;
* a++;
* } while (a != 5)
* return b;
*
* Which becomes the following graph:
* constant0
* constant1
* constant5
* goto
* |
* goto
* |++++++++++++
* phi +
* a++ +
* equals +
* if +
* |++++++++++++
* return
* |
* exit
*/
const std::vector<uint16_t> data = THREE_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::ADD_INT_LIT8 | 1 << 8, 1 << 8,
Instruction::CONST_4 | 5 << 12 | 2 << 8,
Instruction::IF_NE | 1 << 8 | 2 << 12, 3,
Instruction::RETURN | 0 << 8,
Instruction::MOVE | 1 << 12 | 0 << 8,
Instruction::GOTO | 0xF900);
HGraph* graph = CreateCFG(data);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
ASSERT_TRUE(register_allocator->Validate(false));
HBasicBlock* loop_header = graph->GetBlocks()[2];
HPhi* phi = loop_header->GetFirstPhi()->AsPhi();
LiveInterval* phi_interval = phi->GetLiveInterval();
LiveInterval* loop_update = phi->InputAt(1)->GetLiveInterval();
ASSERT_TRUE(phi_interval->HasRegister());
ASSERT_TRUE(loop_update->HasRegister());
ASSERT_NE(phi_interval->GetRegister(), loop_update->GetRegister());
HBasicBlock* return_block = graph->GetBlocks()[3];
HReturn* ret = return_block->GetLastInstruction()->AsReturn();
ASSERT_EQ(phi_interval->GetRegister(), ret->InputAt(0)->GetLiveInterval()->GetRegister());
}
TEST_ALL_STRATEGIES(Loop3);
TEST_F(RegisterAllocatorTest, FirstRegisterUse) {
const std::vector<uint16_t> data = THREE_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::XOR_INT_LIT8 | 1 << 8, 1 << 8,
Instruction::XOR_INT_LIT8 | 0 << 8, 1 << 8,
Instruction::XOR_INT_LIT8 | 1 << 8, 1 << 8 | 1,
Instruction::RETURN_VOID);
HGraph* graph = CreateCFG(data);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
HXor* first_xor = graph->GetBlocks()[1]->GetFirstInstruction()->AsXor();
HXor* last_xor = graph->GetBlocks()[1]->GetLastInstruction()->GetPrevious()->AsXor();
ASSERT_EQ(last_xor->InputAt(0), first_xor);
LiveInterval* interval = first_xor->GetLiveInterval();
ASSERT_EQ(interval->GetEnd(), last_xor->GetLifetimePosition());
ASSERT_TRUE(interval->GetNextSibling() == nullptr);
// We need a register for the output of the instruction.
ASSERT_EQ(interval->FirstRegisterUse(), first_xor->GetLifetimePosition());
// Split at the next instruction.
interval = interval->SplitAt(first_xor->GetLifetimePosition() + 2);
// The user of the split is the last add.
ASSERT_EQ(interval->FirstRegisterUse(), last_xor->GetLifetimePosition());
// Split before the last add.
LiveInterval* new_interval = interval->SplitAt(last_xor->GetLifetimePosition() - 1);
// Ensure the current interval has no register use...
ASSERT_EQ(interval->FirstRegisterUse(), kNoLifetime);
// And the new interval has it for the last add.
ASSERT_EQ(new_interval->FirstRegisterUse(), last_xor->GetLifetimePosition());
}
void RegisterAllocatorTest::DeadPhi(Strategy strategy) {
/* Test for a dead loop phi taking as back-edge input a phi that also has
* this loop phi as input. Walking backwards in SsaDeadPhiElimination
* does not solve the problem because the loop phi will be visited last.
*
* Test the following snippet:
* int a = 0
* do {
* if (true) {
* a = 2;
* }
* } while (true);
*/
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::CONST_4 | 1 << 8 | 0,
Instruction::IF_NE | 1 << 8 | 1 << 12, 3,
Instruction::CONST_4 | 2 << 12 | 0 << 8,
Instruction::GOTO | 0xFD00,
Instruction::RETURN_VOID);
HGraph* graph = CreateCFG(data);
SsaDeadPhiElimination(graph).Run();
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
ASSERT_TRUE(register_allocator->Validate(false));
}
TEST_ALL_STRATEGIES(DeadPhi);
/**
* Test that the TryAllocateFreeReg method works in the presence of inactive intervals
* that share the same register. It should split the interval it is currently
* allocating for at the minimum lifetime position between the two inactive intervals.
* This test only applies to the linear scan allocator.
*/
TEST_F(RegisterAllocatorTest, FreeUntil) {
const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::RETURN);
HGraph* graph = CreateCFG(data);
SsaDeadPhiElimination(graph).Run();
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
RegisterAllocatorLinearScan register_allocator(GetScopedAllocator(), &codegen, liveness);
// Add an artifical range to cover the temps that will be put in the unhandled list.
LiveInterval* unhandled = graph->GetEntryBlock()->GetFirstInstruction()->GetLiveInterval();
unhandled->AddLoopRange(0, 60);
// Populate the instructions in the liveness object, to please the register allocator.
for (size_t i = 0; i < 60; ++i) {
liveness.instructions_from_lifetime_position_.push_back(
graph->GetEntryBlock()->GetFirstInstruction());
}
// For SSA value intervals, only an interval resulted from a split may intersect
// with inactive intervals.
unhandled = register_allocator.Split(unhandled, 5);
// Add three temps holding the same register, and starting at different positions.
// Put the one that should be picked in the middle of the inactive list to ensure
// we do not depend on an order.
LiveInterval* interval =
LiveInterval::MakeFixedInterval(GetScopedAllocator(), 0, DataType::Type::kInt32);
interval->AddRange(40, 50);
register_allocator.inactive_.push_back(interval);
interval = LiveInterval::MakeFixedInterval(GetScopedAllocator(), 0, DataType::Type::kInt32);
interval->AddRange(20, 30);
register_allocator.inactive_.push_back(interval);
interval = LiveInterval::MakeFixedInterval(GetScopedAllocator(), 0, DataType::Type::kInt32);
interval->AddRange(60, 70);
register_allocator.inactive_.push_back(interval);
register_allocator.number_of_registers_ = 1;
register_allocator.registers_array_ = GetAllocator()->AllocArray<size_t>(1);
register_allocator.processing_core_registers_ = true;
register_allocator.unhandled_ = ®ister_allocator.unhandled_core_intervals_;
ASSERT_TRUE(register_allocator.TryAllocateFreeReg(unhandled));
// Check that we have split the interval.
ASSERT_EQ(1u, register_allocator.unhandled_->size());
// Check that we know need to find a new register where the next interval
// that uses the register starts.
ASSERT_EQ(20u, register_allocator.unhandled_->front()->GetStart());
}
HGraph* RegisterAllocatorTest::BuildIfElseWithPhi(HPhi** phi,
HInstruction** input1,
HInstruction** input2) {
HGraph* graph = CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(entry);
graph->SetEntryBlock(entry);
HInstruction* parameter = new (GetAllocator()) HParameterValue(
graph->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kReference);
entry->AddInstruction(parameter);
HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(block);
entry->AddSuccessor(block);
HInstruction* test = new (GetAllocator()) HInstanceFieldGet(parameter,
nullptr,
DataType::Type::kBool,
MemberOffset(22),
false,
kUnknownFieldIndex,
kUnknownClassDefIndex,
graph->GetDexFile(),
0);
block->AddInstruction(test);
block->AddInstruction(new (GetAllocator()) HIf(test));
HBasicBlock* then = new (GetAllocator()) HBasicBlock(graph);
HBasicBlock* else_ = new (GetAllocator()) HBasicBlock(graph);
HBasicBlock* join = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(then);
graph->AddBlock(else_);
graph->AddBlock(join);
block->AddSuccessor(then);
block->AddSuccessor(else_);
then->AddSuccessor(join);
else_->AddSuccessor(join);
then->AddInstruction(new (GetAllocator()) HGoto());
else_->AddInstruction(new (GetAllocator()) HGoto());
*phi = new (GetAllocator()) HPhi(GetAllocator(), 0, 0, DataType::Type::kInt32);
join->AddPhi(*phi);
*input1 = new (GetAllocator()) HInstanceFieldGet(parameter,
nullptr,
DataType::Type::kInt32,
MemberOffset(42),
false,
kUnknownFieldIndex,
kUnknownClassDefIndex,
graph->GetDexFile(),
0);
*input2 = new (GetAllocator()) HInstanceFieldGet(parameter,
nullptr,
DataType::Type::kInt32,
MemberOffset(42),
false,
kUnknownFieldIndex,
kUnknownClassDefIndex,
graph->GetDexFile(),
0);
then->AddInstruction(*input1);
else_->AddInstruction(*input2);
join->AddInstruction(new (GetAllocator()) HExit());
(*phi)->AddInput(*input1);
(*phi)->AddInput(*input2);
graph->BuildDominatorTree();
graph->AnalyzeLoops();
return graph;
}
void RegisterAllocatorTest::PhiHint(Strategy strategy) {
HPhi *phi;
HInstruction *input1, *input2;
{
HGraph* graph = BuildIfElseWithPhi(&phi, &input1, &input2);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
// Check that the register allocator is deterministic.
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
ASSERT_EQ(input1->GetLiveInterval()->GetRegister(), 0);
ASSERT_EQ(input2->GetLiveInterval()->GetRegister(), 0);
ASSERT_EQ(phi->GetLiveInterval()->GetRegister(), 0);
}
{
HGraph* graph = BuildIfElseWithPhi(&phi, &input1, &input2);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
// Set the phi to a specific register, and check that the inputs get allocated
// the same register.
phi->GetLocations()->UpdateOut(Location::RegisterLocation(2));
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
ASSERT_EQ(input1->GetLiveInterval()->GetRegister(), 2);
ASSERT_EQ(input2->GetLiveInterval()->GetRegister(), 2);
ASSERT_EQ(phi->GetLiveInterval()->GetRegister(), 2);
}
{
HGraph* graph = BuildIfElseWithPhi(&phi, &input1, &input2);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
// Set input1 to a specific register, and check that the phi and other input get allocated
// the same register.
input1->GetLocations()->UpdateOut(Location::RegisterLocation(2));
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
ASSERT_EQ(input1->GetLiveInterval()->GetRegister(), 2);
ASSERT_EQ(input2->GetLiveInterval()->GetRegister(), 2);
ASSERT_EQ(phi->GetLiveInterval()->GetRegister(), 2);
}
{
HGraph* graph = BuildIfElseWithPhi(&phi, &input1, &input2);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
// Set input2 to a specific register, and check that the phi and other input get allocated
// the same register.
input2->GetLocations()->UpdateOut(Location::RegisterLocation(2));
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
ASSERT_EQ(input1->GetLiveInterval()->GetRegister(), 2);
ASSERT_EQ(input2->GetLiveInterval()->GetRegister(), 2);
ASSERT_EQ(phi->GetLiveInterval()->GetRegister(), 2);
}
}
// TODO: Enable this test for graph coloring register allocation when iterative move
// coalescing is merged.
TEST_F(RegisterAllocatorTest, PhiHint_LinearScan) {
PhiHint(Strategy::kRegisterAllocatorLinearScan);
}
HGraph* RegisterAllocatorTest::BuildFieldReturn(HInstruction** field, HInstruction** ret) {
HGraph* graph = CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(entry);
graph->SetEntryBlock(entry);
HInstruction* parameter = new (GetAllocator()) HParameterValue(
graph->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kReference);
entry->AddInstruction(parameter);
HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(block);
entry->AddSuccessor(block);
*field = new (GetAllocator()) HInstanceFieldGet(parameter,
nullptr,
DataType::Type::kInt32,
MemberOffset(42),
false,
kUnknownFieldIndex,
kUnknownClassDefIndex,
graph->GetDexFile(),
0);
block->AddInstruction(*field);
*ret = new (GetAllocator()) HReturn(*field);
block->AddInstruction(*ret);
HBasicBlock* exit = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(exit);
block->AddSuccessor(exit);
exit->AddInstruction(new (GetAllocator()) HExit());
graph->BuildDominatorTree();
return graph;
}
void RegisterAllocatorTest::ExpectedInRegisterHint(Strategy strategy) {
HInstruction *field, *ret;
{
HGraph* graph = BuildFieldReturn(&field, &ret);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
// Sanity check that in normal conditions, the register should be hinted to 0 (EAX).
ASSERT_EQ(field->GetLiveInterval()->GetRegister(), 0);
}
{
HGraph* graph = BuildFieldReturn(&field, &ret);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
// Check that the field gets put in the register expected by its use.
// Don't use SetInAt because we are overriding an already allocated location.
ret->GetLocations()->inputs_[0] = Location::RegisterLocation(2);
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
ASSERT_EQ(field->GetLiveInterval()->GetRegister(), 2);
}
}
// TODO: Enable this test for graph coloring register allocation when iterative move
// coalescing is merged.
TEST_F(RegisterAllocatorTest, ExpectedInRegisterHint_LinearScan) {
ExpectedInRegisterHint(Strategy::kRegisterAllocatorLinearScan);
}
HGraph* RegisterAllocatorTest::BuildTwoSubs(HInstruction** first_sub, HInstruction** second_sub) {
HGraph* graph = CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(entry);
graph->SetEntryBlock(entry);
HInstruction* parameter = new (GetAllocator()) HParameterValue(
graph->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kInt32);
entry->AddInstruction(parameter);
HInstruction* constant1 = graph->GetIntConstant(1);
HInstruction* constant2 = graph->GetIntConstant(2);
HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(block);
entry->AddSuccessor(block);
*first_sub = new (GetAllocator()) HSub(DataType::Type::kInt32, parameter, constant1);
block->AddInstruction(*first_sub);
*second_sub = new (GetAllocator()) HSub(DataType::Type::kInt32, *first_sub, constant2);
block->AddInstruction(*second_sub);
block->AddInstruction(new (GetAllocator()) HExit());
graph->BuildDominatorTree();
return graph;
}
void RegisterAllocatorTest::SameAsFirstInputHint(Strategy strategy) {
HInstruction *first_sub, *second_sub;
{
HGraph* graph = BuildTwoSubs(&first_sub, &second_sub);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
// Sanity check that in normal conditions, the registers are the same.
ASSERT_EQ(first_sub->GetLiveInterval()->GetRegister(), 1);
ASSERT_EQ(second_sub->GetLiveInterval()->GetRegister(), 1);
}
{
HGraph* graph = BuildTwoSubs(&first_sub, &second_sub);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
// check that both adds get the same register.
// Don't use UpdateOutput because output is already allocated.
first_sub->InputAt(0)->GetLocations()->output_ = Location::RegisterLocation(2);
ASSERT_EQ(first_sub->GetLocations()->Out().GetPolicy(), Location::kSameAsFirstInput);
ASSERT_EQ(second_sub->GetLocations()->Out().GetPolicy(), Location::kSameAsFirstInput);
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
ASSERT_EQ(first_sub->GetLiveInterval()->GetRegister(), 2);
ASSERT_EQ(second_sub->GetLiveInterval()->GetRegister(), 2);
}
}
// TODO: Enable this test for graph coloring register allocation when iterative move
// coalescing is merged.
TEST_F(RegisterAllocatorTest, SameAsFirstInputHint_LinearScan) {
SameAsFirstInputHint(Strategy::kRegisterAllocatorLinearScan);
}
HGraph* RegisterAllocatorTest::BuildDiv(HInstruction** div) {
HGraph* graph = CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(entry);
graph->SetEntryBlock(entry);
HInstruction* first = new (GetAllocator()) HParameterValue(
graph->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kInt32);
HInstruction* second = new (GetAllocator()) HParameterValue(
graph->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kInt32);
entry->AddInstruction(first);
entry->AddInstruction(second);
HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(block);
entry->AddSuccessor(block);
*div = new (GetAllocator()) HDiv(
DataType::Type::kInt32, first, second, 0); // don't care about dex_pc.
block->AddInstruction(*div);
block->AddInstruction(new (GetAllocator()) HExit());
graph->BuildDominatorTree();
return graph;
}
void RegisterAllocatorTest::ExpectedExactInRegisterAndSameOutputHint(Strategy strategy) {
HInstruction *div;
HGraph* graph = BuildDiv(&div);
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
liveness.Analyze();
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(GetScopedAllocator(), &codegen, liveness, strategy);
register_allocator->AllocateRegisters();
// div on x86 requires its first input in eax and the output be the same as the first input.
ASSERT_EQ(div->GetLiveInterval()->GetRegister(), 0);
}
// TODO: Enable this test for graph coloring register allocation when iterative move
// coalescing is merged.
TEST_F(RegisterAllocatorTest, ExpectedExactInRegisterAndSameOutputHint_LinearScan) {
ExpectedExactInRegisterAndSameOutputHint(Strategy::kRegisterAllocatorLinearScan);
}
// Test a bug in the register allocator, where allocating a blocked
// register would lead to spilling an inactive interval at the wrong
// position.
// This test only applies to the linear scan allocator.
TEST_F(RegisterAllocatorTest, SpillInactive) {
// Create a synthesized graph to please the register_allocator and
// ssa_liveness_analysis code.
HGraph* graph = CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(entry);
graph->SetEntryBlock(entry);
HInstruction* one = new (GetAllocator()) HParameterValue(
graph->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kInt32);
HInstruction* two = new (GetAllocator()) HParameterValue(
graph->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kInt32);
HInstruction* three = new (GetAllocator()) HParameterValue(
graph->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kInt32);
HInstruction* four = new (GetAllocator()) HParameterValue(
graph->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kInt32);
entry->AddInstruction(one);
entry->AddInstruction(two);
entry->AddInstruction(three);
entry->AddInstruction(four);
HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph);
graph->AddBlock(block);
entry->AddSuccessor(block);
block->AddInstruction(new (GetAllocator()) HExit());
// We create a synthesized user requesting a register, to avoid just spilling the
// intervals.
HPhi* user = new (GetAllocator()) HPhi(GetAllocator(), 0, 1, DataType::Type::kInt32);
user->AddInput(one);
user->SetBlock(block);
LocationSummary* locations = new (GetAllocator()) LocationSummary(user, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
static constexpr size_t phi_ranges[][2] = {{20, 30}};
BuildInterval(phi_ranges, arraysize(phi_ranges), GetScopedAllocator(), -1, user);
// Create an interval with lifetime holes.
static constexpr size_t ranges1[][2] = {{0, 2}, {4, 6}, {8, 10}};
LiveInterval* first = BuildInterval(ranges1, arraysize(ranges1), GetScopedAllocator(), -1, one);
first->uses_.push_front(*new (GetScopedAllocator()) UsePosition(user, 0u, 8));
first->uses_.push_front(*new (GetScopedAllocator()) UsePosition(user, 0u, 7));
first->uses_.push_front(*new (GetScopedAllocator()) UsePosition(user, 0u, 6));
locations = new (GetAllocator()) LocationSummary(first->GetDefinedBy(), LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
first = first->SplitAt(1);
// Create an interval that conflicts with the next interval, to force the next
// interval to call `AllocateBlockedReg`.
static constexpr size_t ranges2[][2] = {{2, 4}};
LiveInterval* second = BuildInterval(ranges2, arraysize(ranges2), GetScopedAllocator(), -1, two);
locations =
new (GetAllocator()) LocationSummary(second->GetDefinedBy(), LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
// Create an interval that will lead to splitting the first interval. The bug occured
// by splitting at a wrong position, in this case at the next intersection between
// this interval and the first interval. We would have then put the interval with ranges
// "[0, 2(, [4, 6(" in the list of handled intervals, even though we haven't processed intervals
// before lifetime position 6 yet.
static constexpr size_t ranges3[][2] = {{2, 4}, {8, 10}};
LiveInterval* third = BuildInterval(ranges3, arraysize(ranges3), GetScopedAllocator(), -1, three);
third->uses_.push_front(*new (GetScopedAllocator()) UsePosition(user, 0u, 8));
third->uses_.push_front(*new (GetScopedAllocator()) UsePosition(user, 0u, 4));
third->uses_.push_front(*new (GetScopedAllocator()) UsePosition(user, 0u, 3));
locations = new (GetAllocator()) LocationSummary(third->GetDefinedBy(), LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
third = third->SplitAt(3);
// Because the first part of the split interval was considered handled, this interval
// was free to allocate the same register, even though it conflicts with it.
static constexpr size_t ranges4[][2] = {{4, 6}};
LiveInterval* fourth = BuildInterval(ranges4, arraysize(ranges4), GetScopedAllocator(), -1, four);
locations =
new (GetAllocator()) LocationSummary(fourth->GetDefinedBy(), LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
x86::CodeGeneratorX86 codegen(graph, *compiler_options_);
SsaLivenessAnalysis liveness(graph, &codegen, GetScopedAllocator());
// Populate the instructions in the liveness object, to please the register allocator.
for (size_t i = 0; i < 32; ++i) {
liveness.instructions_from_lifetime_position_.push_back(user);
}
RegisterAllocatorLinearScan register_allocator(GetScopedAllocator(), &codegen, liveness);
register_allocator.unhandled_core_intervals_.push_back(fourth);
register_allocator.unhandled_core_intervals_.push_back(third);
register_allocator.unhandled_core_intervals_.push_back(second);
register_allocator.unhandled_core_intervals_.push_back(first);
// Set just one register available to make all intervals compete for the same.
register_allocator.number_of_registers_ = 1;
register_allocator.registers_array_ = GetAllocator()->AllocArray<size_t>(1);
register_allocator.processing_core_registers_ = true;
register_allocator.unhandled_ = ®ister_allocator.unhandled_core_intervals_;
register_allocator.LinearScan();
// Test that there is no conflicts between intervals.
ScopedArenaVector<LiveInterval*> intervals(GetScopedAllocator()->Adapter());
intervals.push_back(first);
intervals.push_back(second);
intervals.push_back(third);
intervals.push_back(fourth);
ASSERT_TRUE(ValidateIntervals(intervals, codegen));
}
} // namespace art
|