File: snapshot.cpp

package info (click to toggle)
android-platform-tools 29.0.6-28
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 365,224 kB
  • sloc: cpp: 1,049,638; java: 460,532; ansic: 375,452; asm: 301,257; xml: 134,509; python: 92,731; perl: 62,008; sh: 26,753; makefile: 3,210; javascript: 3,172; yacc: 1,403; lex: 455; awk: 368; ruby: 183; sql: 140
file content (2585 lines) | stat: -rw-r--r-- 99,154 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
// Copyright (C) 2019 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <libsnapshot/snapshot.h>

#include <dirent.h>
#include <math.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/unistd.h>

#include <optional>
#include <sstream>
#include <thread>
#include <unordered_set>

#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <ext4_utils/ext4_utils.h>
#include <fs_mgr.h>
#include <fs_mgr_dm_linear.h>
#include <fstab/fstab.h>
#include <libdm/dm.h>
#include <libfiemap/image_manager.h>
#include <liblp/liblp.h>

#ifdef LIBSNAPSHOT_USE_CALLSTACK
#include <utils/CallStack.h>
#endif

#include <android/snapshot/snapshot.pb.h>
#include "device_info.h"
#include "partition_cow_creator.h"
#include "snapshot_metadata_updater.h"
#include "utility.h"

namespace android {
namespace snapshot {

using android::base::unique_fd;
using android::dm::DeviceMapper;
using android::dm::DmDeviceState;
using android::dm::DmTable;
using android::dm::DmTargetLinear;
using android::dm::DmTargetSnapshot;
using android::dm::kSectorSize;
using android::dm::SnapshotStorageMode;
using android::fiemap::FiemapStatus;
using android::fiemap::IImageManager;
using android::fs_mgr::CreateDmTable;
using android::fs_mgr::CreateLogicalPartition;
using android::fs_mgr::CreateLogicalPartitionParams;
using android::fs_mgr::GetPartitionGroupName;
using android::fs_mgr::GetPartitionName;
using android::fs_mgr::LpMetadata;
using android::fs_mgr::MetadataBuilder;
using android::fs_mgr::SlotNumberForSlotSuffix;
using android::hardware::boot::V1_1::MergeStatus;
using chromeos_update_engine::DeltaArchiveManifest;
using chromeos_update_engine::Extent;
using chromeos_update_engine::InstallOperation;
template <typename T>
using RepeatedPtrField = google::protobuf::RepeatedPtrField<T>;
using std::chrono::duration_cast;
using namespace std::chrono_literals;
using namespace std::string_literals;

static constexpr char kBootIndicatorPath[] = "/metadata/ota/snapshot-boot";
static constexpr auto kUpdateStateCheckInterval = 2s;

// Note: IImageManager is an incomplete type in the header, so the default
// destructor doesn't work.
SnapshotManager::~SnapshotManager() {}

std::unique_ptr<SnapshotManager> SnapshotManager::New(IDeviceInfo* info) {
    if (!info) {
        info = new DeviceInfo();
    }
    return std::unique_ptr<SnapshotManager>(new SnapshotManager(info));
}

std::unique_ptr<SnapshotManager> SnapshotManager::NewForFirstStageMount(IDeviceInfo* info) {
    auto sm = New(info);
    if (!sm || !sm->ForceLocalImageManager()) {
        return nullptr;
    }
    return sm;
}

SnapshotManager::SnapshotManager(IDeviceInfo* device) : device_(device) {
    gsid_dir_ = device_->GetGsidDir();
    metadata_dir_ = device_->GetMetadataDir();
}

static std::string GetCowName(const std::string& snapshot_name) {
    return snapshot_name + "-cow";
}

static std::string GetCowImageDeviceName(const std::string& snapshot_name) {
    return snapshot_name + "-cow-img";
}

static std::string GetBaseDeviceName(const std::string& partition_name) {
    return partition_name + "-base";
}

static std::string GetSnapshotExtraDeviceName(const std::string& snapshot_name) {
    return snapshot_name + "-inner";
}

bool SnapshotManager::BeginUpdate() {
    bool needs_merge = false;
    if (!TryCancelUpdate(&needs_merge)) {
        return false;
    }
    if (needs_merge) {
        LOG(INFO) << "Wait for merge (if any) before beginning a new update.";
        auto state = ProcessUpdateState();
        LOG(INFO) << "Merged with state = " << state;
    }

    auto file = LockExclusive();
    if (!file) return false;

    // Purge the ImageManager just in case there is a corrupt lp_metadata file
    // lying around. (NB: no need to return false on an error, we can let the
    // update try to progress.)
    if (EnsureImageManager()) {
        images_->RemoveAllImages();
    }

    auto state = ReadUpdateState(file.get());
    if (state != UpdateState::None) {
        LOG(ERROR) << "An update is already in progress, cannot begin a new update";
        return false;
    }
    return WriteUpdateState(file.get(), UpdateState::Initiated);
}

bool SnapshotManager::CancelUpdate() {
    bool needs_merge = false;
    if (!TryCancelUpdate(&needs_merge)) {
        return false;
    }
    if (needs_merge) {
        LOG(ERROR) << "Cannot cancel update after it has completed or started merging";
    }
    return !needs_merge;
}

bool SnapshotManager::TryCancelUpdate(bool* needs_merge) {
    *needs_merge = false;

    auto file = LockExclusive();
    if (!file) return false;

    UpdateState state = ReadUpdateState(file.get());
    if (state == UpdateState::None) return true;

    if (state == UpdateState::Initiated) {
        LOG(INFO) << "Update has been initiated, now canceling";
        return RemoveAllUpdateState(file.get());
    }

    if (state == UpdateState::Unverified) {
        // We completed an update, but it can still be canceled if we haven't booted into it.
        auto slot = GetCurrentSlot();
        if (slot != Slot::Target) {
            LOG(INFO) << "Canceling previously completed updates (if any)";
            return RemoveAllUpdateState(file.get());
        }
    }
    *needs_merge = true;
    return true;
}

std::string SnapshotManager::ReadUpdateSourceSlotSuffix() {
    auto boot_file = GetSnapshotBootIndicatorPath();
    std::string contents;
    if (!android::base::ReadFileToString(boot_file, &contents)) {
        PLOG(WARNING) << "Cannot read " << boot_file;
        return {};
    }
    return contents;
}

SnapshotManager::Slot SnapshotManager::GetCurrentSlot() {
    auto contents = ReadUpdateSourceSlotSuffix();
    if (contents.empty()) {
        return Slot::Unknown;
    }
    if (device_->GetSlotSuffix() == contents) {
        return Slot::Source;
    }
    return Slot::Target;
}

static bool RemoveFileIfExists(const std::string& path) {
    std::string message;
    if (!android::base::RemoveFileIfExists(path, &message)) {
        LOG(ERROR) << "Remove failed: " << path << ": " << message;
        return false;
    }
    return true;
}

bool SnapshotManager::RemoveAllUpdateState(LockedFile* lock) {
    LOG(INFO) << "Removing all update state.";

#ifdef LIBSNAPSHOT_USE_CALLSTACK
    LOG(WARNING) << "Logging stack; see b/148818798.";
    // Do not use CallStack's log functions because snapshotctl relies on
    // android-base/logging to save log to files.
    // TODO(b/148818798): remove this before we ship.
    CallStack callstack;
    callstack.update();
    auto callstack_str = callstack.toString();
    LOG(WARNING) << callstack_str.c_str();
    std::stringstream path;
    path << "/data/misc/snapshotctl_log/libsnapshot." << Now() << ".log";
    android::base::WriteStringToFile(callstack_str.c_str(), path.str());
#endif

    if (!RemoveAllSnapshots(lock)) {
        LOG(ERROR) << "Could not remove all snapshots";
        return false;
    }

    // It's okay if these fail - first-stage init performs a deeper check after
    // reading the indicator file, so it's not a problem if it still exists
    // after the update completes.
    std::vector<std::string> files = {GetSnapshotBootIndicatorPath(), GetRollbackIndicatorPath()};
    for (const auto& file : files) {
        RemoveFileIfExists(file);
    }

    // If this fails, we'll keep trying to remove the update state (as the
    // device reboots or starts a new update) until it finally succeeds.
    return WriteUpdateState(lock, UpdateState::None);
}

bool SnapshotManager::FinishedSnapshotWrites() {
    auto lock = LockExclusive();
    if (!lock) return false;

    auto update_state = ReadUpdateState(lock.get());
    if (update_state == UpdateState::Unverified) {
        LOG(INFO) << "FinishedSnapshotWrites already called before. Ignored.";
        return true;
    }

    if (update_state != UpdateState::Initiated) {
        LOG(ERROR) << "Can only transition to the Unverified state from the Initiated state.";
        return false;
    }

    if (!EnsureNoOverflowSnapshot(lock.get())) {
        LOG(ERROR) << "Cannot ensure there are no overflow snapshots.";
        return false;
    }

    // This file is written on boot to detect whether a rollback occurred. It
    // MUST NOT exist before rebooting, otherwise, we're at risk of deleting
    // snapshots too early.
    if (!RemoveFileIfExists(GetRollbackIndicatorPath())) {
        return false;
    }

    // This file acts as both a quick indicator for init (it can use access(2)
    // to decide how to do first-stage mounts), and it stores the old slot, so
    // we can tell whether or not we performed a rollback.
    auto contents = device_->GetSlotSuffix();
    auto boot_file = GetSnapshotBootIndicatorPath();
    if (!WriteStringToFileAtomic(contents, boot_file)) {
        PLOG(ERROR) << "write failed: " << boot_file;
        return false;
    }
    return WriteUpdateState(lock.get(), UpdateState::Unverified);
}

bool SnapshotManager::CreateSnapshot(LockedFile* lock, SnapshotStatus* status) {
    CHECK(lock);
    CHECK(lock->lock_mode() == LOCK_EX);
    CHECK(status);

    if (status->name().empty()) {
        LOG(ERROR) << "SnapshotStatus has no name.";
        return false;
    }
    // Sanity check these sizes. Like liblp, we guarantee the partition size
    // is respected, which means it has to be sector-aligned. (This guarantee
    // is useful for locating avb footers correctly). The COW file size, however,
    // can be arbitrarily larger than specified, so we can safely round it up.
    if (status->device_size() % kSectorSize != 0) {
        LOG(ERROR) << "Snapshot " << status->name()
                   << " device size is not a multiple of the sector size: "
                   << status->device_size();
        return false;
    }
    if (status->snapshot_size() % kSectorSize != 0) {
        LOG(ERROR) << "Snapshot " << status->name()
                   << " snapshot size is not a multiple of the sector size: "
                   << status->snapshot_size();
        return false;
    }
    if (status->cow_partition_size() % kSectorSize != 0) {
        LOG(ERROR) << "Snapshot " << status->name()
                   << " cow partition size is not a multiple of the sector size: "
                   << status->cow_partition_size();
        return false;
    }
    if (status->cow_file_size() % kSectorSize != 0) {
        LOG(ERROR) << "Snapshot " << status->name()
                   << " cow file size is not a multiple of the sector size: "
                   << status->cow_file_size();
        return false;
    }

    status->set_state(SnapshotState::CREATED);
    status->set_sectors_allocated(0);
    status->set_metadata_sectors(0);

    if (!WriteSnapshotStatus(lock, *status)) {
        PLOG(ERROR) << "Could not write snapshot status: " << status->name();
        return false;
    }
    return true;
}

Return SnapshotManager::CreateCowImage(LockedFile* lock, const std::string& name) {
    CHECK(lock);
    CHECK(lock->lock_mode() == LOCK_EX);
    if (!EnsureImageManager()) return Return::Error();

    SnapshotStatus status;
    if (!ReadSnapshotStatus(lock, name, &status)) {
        return Return::Error();
    }

    // The COW file size should have been rounded up to the nearest sector in CreateSnapshot.
    // Sanity check this.
    if (status.cow_file_size() % kSectorSize != 0) {
        LOG(ERROR) << "Snapshot " << name << " COW file size is not a multiple of the sector size: "
                   << status.cow_file_size();
        return Return::Error();
    }

    std::string cow_image_name = GetCowImageDeviceName(name);
    int cow_flags = IImageManager::CREATE_IMAGE_DEFAULT;
    return Return(images_->CreateBackingImage(cow_image_name, status.cow_file_size(), cow_flags));
}

bool SnapshotManager::MapSnapshot(LockedFile* lock, const std::string& name,
                                  const std::string& base_device, const std::string& cow_device,
                                  const std::chrono::milliseconds& timeout_ms,
                                  std::string* dev_path) {
    CHECK(lock);

    SnapshotStatus status;
    if (!ReadSnapshotStatus(lock, name, &status)) {
        return false;
    }
    if (status.state() == SnapshotState::NONE || status.state() == SnapshotState::MERGE_COMPLETED) {
        LOG(ERROR) << "Should not create a snapshot device for " << name
                   << " after merging has completed.";
        return false;
    }

    // Validate the block device size, as well as the requested snapshot size.
    // Note that during first-stage init, we don't have the device paths.
    if (android::base::StartsWith(base_device, "/")) {
        unique_fd fd(open(base_device.c_str(), O_RDONLY | O_CLOEXEC));
        if (fd < 0) {
            PLOG(ERROR) << "open failed: " << base_device;
            return false;
        }
        auto dev_size = get_block_device_size(fd);
        if (!dev_size) {
            PLOG(ERROR) << "Could not determine block device size: " << base_device;
            return false;
        }
        if (status.device_size() != dev_size) {
            LOG(ERROR) << "Block device size for " << base_device << " does not match"
                       << "(expected " << status.device_size() << ", got " << dev_size << ")";
            return false;
        }
    }
    if (status.device_size() % kSectorSize != 0) {
        LOG(ERROR) << "invalid blockdev size for " << base_device << ": " << status.device_size();
        return false;
    }
    if (status.snapshot_size() % kSectorSize != 0 ||
        status.snapshot_size() > status.device_size()) {
        LOG(ERROR) << "Invalid snapshot size for " << base_device << ": " << status.snapshot_size();
        return false;
    }
    uint64_t snapshot_sectors = status.snapshot_size() / kSectorSize;
    uint64_t linear_sectors = (status.device_size() - status.snapshot_size()) / kSectorSize;

    auto& dm = DeviceMapper::Instance();

    // Note that merging is a global state. We do track whether individual devices
    // have completed merging, but the start of the merge process is considered
    // atomic.
    SnapshotStorageMode mode;
    switch (ReadUpdateState(lock)) {
        case UpdateState::MergeCompleted:
        case UpdateState::MergeNeedsReboot:
            LOG(ERROR) << "Should not create a snapshot device for " << name
                       << " after global merging has completed.";
            return false;
        case UpdateState::Merging:
        case UpdateState::MergeFailed:
            // Note: MergeFailed indicates that a merge is in progress, but
            // is possibly stalled. We still have to honor the merge.
            mode = SnapshotStorageMode::Merge;
            break;
        default:
            mode = SnapshotStorageMode::Persistent;
            break;
    }

    // The kernel (tested on 4.19) crashes horribly if a device has both a snapshot
    // and a linear target in the same table. Instead, we stack them, and give the
    // snapshot device a different name. It is not exposed to the caller in this
    // case.
    auto snap_name = (linear_sectors > 0) ? GetSnapshotExtraDeviceName(name) : name;

    DmTable table;
    table.Emplace<DmTargetSnapshot>(0, snapshot_sectors, base_device, cow_device, mode,
                                    kSnapshotChunkSize);
    if (!dm.CreateDevice(snap_name, table, dev_path, timeout_ms)) {
        LOG(ERROR) << "Could not create snapshot device: " << snap_name;
        return false;
    }

    if (linear_sectors) {
        std::string snap_dev;
        if (!dm.GetDeviceString(snap_name, &snap_dev)) {
            LOG(ERROR) << "Cannot determine major/minor for: " << snap_name;
            return false;
        }

        // Our stacking will looks like this:
        //     [linear, linear] ; to snapshot, and non-snapshot region of base device
        //     [snapshot-inner]
        //     [base device]   [cow]
        DmTable table;
        table.Emplace<DmTargetLinear>(0, snapshot_sectors, snap_dev, 0);
        table.Emplace<DmTargetLinear>(snapshot_sectors, linear_sectors, base_device,
                                      snapshot_sectors);
        if (!dm.CreateDevice(name, table, dev_path, timeout_ms)) {
            LOG(ERROR) << "Could not create outer snapshot device: " << name;
            dm.DeleteDevice(snap_name);
            return false;
        }
    }

    // :TODO: when merging is implemented, we need to add an argument to the
    // status indicating how much progress is left to merge. (device-mapper
    // does not retain the initial values, so we can't derive them.)
    return true;
}

std::optional<std::string> SnapshotManager::MapCowImage(
        const std::string& name, const std::chrono::milliseconds& timeout_ms) {
    if (!EnsureImageManager()) return std::nullopt;
    auto cow_image_name = GetCowImageDeviceName(name);

    bool ok;
    std::string cow_dev;
    if (has_local_image_manager_) {
        // If we forced a local image manager, it means we don't have binder,
        // which means first-stage init. We must use device-mapper.
        const auto& opener = device_->GetPartitionOpener();
        ok = images_->MapImageWithDeviceMapper(opener, cow_image_name, &cow_dev);
    } else {
        ok = images_->MapImageDevice(cow_image_name, timeout_ms, &cow_dev);
    }

    if (ok) {
        LOG(INFO) << "Mapped " << cow_image_name << " to " << cow_dev;
        return cow_dev;
    }
    LOG(ERROR) << "Could not map image device: " << cow_image_name;
    return std::nullopt;
}

bool SnapshotManager::UnmapSnapshot(LockedFile* lock, const std::string& name) {
    CHECK(lock);

    auto& dm = DeviceMapper::Instance();
    if (!dm.DeleteDeviceIfExists(name)) {
        LOG(ERROR) << "Could not delete snapshot device: " << name;
        return false;
    }

    auto snapshot_extra_device = GetSnapshotExtraDeviceName(name);
    if (!dm.DeleteDeviceIfExists(snapshot_extra_device)) {
        LOG(ERROR) << "Could not delete snapshot inner device: " << snapshot_extra_device;
        return false;
    }

    return true;
}

bool SnapshotManager::UnmapCowImage(const std::string& name) {
    if (!EnsureImageManager()) return false;
    return images_->UnmapImageIfExists(GetCowImageDeviceName(name));
}

bool SnapshotManager::DeleteSnapshot(LockedFile* lock, const std::string& name) {
    CHECK(lock);
    CHECK(lock->lock_mode() == LOCK_EX);
    if (!EnsureImageManager()) return false;

    if (!UnmapCowDevices(lock, name)) {
        return false;
    }

    // We can't delete snapshots in recovery. The only way we'd try is it we're
    // completing or canceling a merge in preparation for a data wipe, in which
    // case, we don't care if the file sticks around.
    if (device_->IsRecovery()) {
        LOG(INFO) << "Skipping delete of snapshot " << name << " in recovery.";
        return true;
    }

    auto cow_image_name = GetCowImageDeviceName(name);
    if (images_->BackingImageExists(cow_image_name)) {
        if (!images_->DeleteBackingImage(cow_image_name)) {
            return false;
        }
    }

    std::string error;
    auto file_path = GetSnapshotStatusFilePath(name);
    if (!android::base::RemoveFileIfExists(file_path, &error)) {
        LOG(ERROR) << "Failed to remove status file " << file_path << ": " << error;
        return false;
    }
    return true;
}

bool SnapshotManager::InitiateMerge() {
    auto lock = LockExclusive();
    if (!lock) return false;

    UpdateState state = ReadUpdateState(lock.get());
    if (state != UpdateState::Unverified) {
        LOG(ERROR) << "Cannot begin a merge if an update has not been verified";
        return false;
    }

    auto slot = GetCurrentSlot();
    if (slot != Slot::Target) {
        LOG(ERROR) << "Device cannot merge while not booting from new slot";
        return false;
    }

    std::vector<std::string> snapshots;
    if (!ListSnapshots(lock.get(), &snapshots)) {
        LOG(ERROR) << "Could not list snapshots";
        return false;
    }

    auto& dm = DeviceMapper::Instance();
    for (const auto& snapshot : snapshots) {
        // The device has to be mapped, since everything should be merged at
        // the same time. This is a fairly serious error. We could forcefully
        // map everything here, but it should have been mapped during first-
        // stage init.
        if (dm.GetState(snapshot) == DmDeviceState::INVALID) {
            LOG(ERROR) << "Cannot begin merge; device " << snapshot << " is not mapped.";
            return false;
        }
    }

    auto metadata = ReadCurrentMetadata();
    for (auto it = snapshots.begin(); it != snapshots.end();) {
        switch (GetMetadataPartitionState(*metadata, *it)) {
            case MetadataPartitionState::Flashed:
                LOG(WARNING) << "Detected re-flashing for partition " << *it
                             << ". Skip merging it.";
                [[fallthrough]];
            case MetadataPartitionState::None: {
                LOG(WARNING) << "Deleting snapshot for partition " << *it;
                if (!DeleteSnapshot(lock.get(), *it)) {
                    LOG(WARNING) << "Cannot delete snapshot for partition " << *it
                                 << ". Skip merging it anyways.";
                }
                it = snapshots.erase(it);
            } break;
            case MetadataPartitionState::Updated: {
                ++it;
            } break;
        }
    }

    DmTargetSnapshot::Status initial_target_values = {};
    for (const auto& snapshot : snapshots) {
        DmTargetSnapshot::Status current_status;
        if (!QuerySnapshotStatus(snapshot, nullptr, &current_status)) {
            return false;
        }
        initial_target_values.sectors_allocated += current_status.sectors_allocated;
        initial_target_values.total_sectors += current_status.total_sectors;
        initial_target_values.metadata_sectors += current_status.metadata_sectors;
    }

    SnapshotUpdateStatus initial_status;
    initial_status.set_state(UpdateState::Merging);
    initial_status.set_sectors_allocated(initial_target_values.sectors_allocated);
    initial_status.set_total_sectors(initial_target_values.total_sectors);
    initial_status.set_metadata_sectors(initial_target_values.metadata_sectors);

    // Point of no return - mark that we're starting a merge. From now on every
    // snapshot must be a merge target.
    if (!WriteSnapshotUpdateStatus(lock.get(), initial_status)) {
        return false;
    }

    bool rewrote_all = true;
    for (const auto& snapshot : snapshots) {
        // If this fails, we have no choice but to continue. Everything must
        // be merged. This is not an ideal state to be in, but it is safe,
        // because we the next boot will try again.
        if (!SwitchSnapshotToMerge(lock.get(), snapshot)) {
            LOG(ERROR) << "Failed to switch snapshot to a merge target: " << snapshot;
            rewrote_all = false;
        }
    }

    // If we couldn't switch everything to a merge target, pre-emptively mark
    // this merge as failed. It will get acknowledged when WaitForMerge() is
    // called.
    if (!rewrote_all) {
        WriteUpdateState(lock.get(), UpdateState::MergeFailed);
    }

    // Return true no matter what, because a merge was initiated.
    return true;
}

bool SnapshotManager::SwitchSnapshotToMerge(LockedFile* lock, const std::string& name) {
    SnapshotStatus status;
    if (!ReadSnapshotStatus(lock, name, &status)) {
        return false;
    }
    if (status.state() != SnapshotState::CREATED) {
        LOG(WARNING) << "Snapshot " << name
                     << " has unexpected state: " << SnapshotState_Name(status.state());
    }

    // After this, we return true because we technically did switch to a merge
    // target. Everything else we do here is just informational.
    auto dm_name = GetSnapshotDeviceName(name, status);
    if (!RewriteSnapshotDeviceTable(dm_name)) {
        return false;
    }

    status.set_state(SnapshotState::MERGING);

    DmTargetSnapshot::Status dm_status;
    if (!QuerySnapshotStatus(dm_name, nullptr, &dm_status)) {
        LOG(ERROR) << "Could not query merge status for snapshot: " << dm_name;
    }
    status.set_sectors_allocated(dm_status.sectors_allocated);
    status.set_metadata_sectors(dm_status.metadata_sectors);
    if (!WriteSnapshotStatus(lock, status)) {
        LOG(ERROR) << "Could not update status file for snapshot: " << name;
    }
    return true;
}

bool SnapshotManager::RewriteSnapshotDeviceTable(const std::string& dm_name) {
    auto& dm = DeviceMapper::Instance();

    std::vector<DeviceMapper::TargetInfo> old_targets;
    if (!dm.GetTableInfo(dm_name, &old_targets)) {
        LOG(ERROR) << "Could not read snapshot device table: " << dm_name;
        return false;
    }
    if (old_targets.size() != 1 || DeviceMapper::GetTargetType(old_targets[0].spec) != "snapshot") {
        LOG(ERROR) << "Unexpected device-mapper table for snapshot: " << dm_name;
        return false;
    }

    std::string base_device, cow_device;
    if (!DmTargetSnapshot::GetDevicesFromParams(old_targets[0].data, &base_device, &cow_device)) {
        LOG(ERROR) << "Could not derive underlying devices for snapshot: " << dm_name;
        return false;
    }

    DmTable table;
    table.Emplace<DmTargetSnapshot>(0, old_targets[0].spec.length, base_device, cow_device,
                                    SnapshotStorageMode::Merge, kSnapshotChunkSize);
    if (!dm.LoadTableAndActivate(dm_name, table)) {
        LOG(ERROR) << "Could not swap device-mapper tables on snapshot device " << dm_name;
        return false;
    }
    LOG(INFO) << "Successfully switched snapshot device to a merge target: " << dm_name;
    return true;
}

enum class TableQuery {
    Table,
    Status,
};

static bool GetSingleTarget(const std::string& dm_name, TableQuery query,
                            DeviceMapper::TargetInfo* target) {
    auto& dm = DeviceMapper::Instance();
    if (dm.GetState(dm_name) == DmDeviceState::INVALID) {
        return false;
    }

    std::vector<DeviceMapper::TargetInfo> targets;
    bool result;
    if (query == TableQuery::Status) {
        result = dm.GetTableStatus(dm_name, &targets);
    } else {
        result = dm.GetTableInfo(dm_name, &targets);
    }
    if (!result) {
        LOG(ERROR) << "Could not query device: " << dm_name;
        return false;
    }
    if (targets.size() != 1) {
        return false;
    }

    *target = std::move(targets[0]);
    return true;
}

bool SnapshotManager::IsSnapshotDevice(const std::string& dm_name, TargetInfo* target) {
    DeviceMapper::TargetInfo snap_target;
    if (!GetSingleTarget(dm_name, TableQuery::Status, &snap_target)) {
        return false;
    }
    auto type = DeviceMapper::GetTargetType(snap_target.spec);
    if (type != "snapshot" && type != "snapshot-merge") {
        return false;
    }
    if (target) {
        *target = std::move(snap_target);
    }
    return true;
}

bool SnapshotManager::QuerySnapshotStatus(const std::string& dm_name, std::string* target_type,
                                          DmTargetSnapshot::Status* status) {
    DeviceMapper::TargetInfo target;
    if (!IsSnapshotDevice(dm_name, &target)) {
        LOG(ERROR) << "Device " << dm_name << " is not a snapshot or snapshot-merge device";
        return false;
    }
    if (!DmTargetSnapshot::ParseStatusText(target.data, status)) {
        LOG(ERROR) << "Could not parse snapshot status text: " << dm_name;
        return false;
    }
    if (target_type) {
        *target_type = DeviceMapper::GetTargetType(target.spec);
    }
    return true;
}

// Note that when a merge fails, we will *always* try again to complete the
// merge each time the device boots. There is no harm in doing so, and if
// the problem was transient, we might manage to get a new outcome.
UpdateState SnapshotManager::ProcessUpdateState(const std::function<void()>& callback) {
    while (true) {
        UpdateState state = CheckMergeState();
        if (state == UpdateState::MergeFailed) {
            AcknowledgeMergeFailure();
        }
        if (state != UpdateState::Merging) {
            // Either there is no merge, or the merge was finished, so no need
            // to keep waiting.
            return state;
        }

        if (callback) {
            callback();
        }

        // This wait is not super time sensitive, so we have a relatively
        // low polling frequency.
        std::this_thread::sleep_for(kUpdateStateCheckInterval);
    }
}

UpdateState SnapshotManager::CheckMergeState() {
    auto lock = LockExclusive();
    if (!lock) {
        return UpdateState::MergeFailed;
    }

    UpdateState state = CheckMergeState(lock.get());
    if (state == UpdateState::MergeCompleted) {
        // Do this inside the same lock. Failures get acknowledged without the
        // lock, because flock() might have failed.
        AcknowledgeMergeSuccess(lock.get());
    } else if (state == UpdateState::Cancelled) {
        RemoveAllUpdateState(lock.get());
    }
    return state;
}

UpdateState SnapshotManager::CheckMergeState(LockedFile* lock) {
    UpdateState state = ReadUpdateState(lock);
    switch (state) {
        case UpdateState::None:
        case UpdateState::MergeCompleted:
            // Harmless races are allowed between two callers of WaitForMerge,
            // so in both of these cases we just propagate the state.
            return state;

        case UpdateState::Merging:
        case UpdateState::MergeNeedsReboot:
        case UpdateState::MergeFailed:
            // We'll poll each snapshot below. Note that for the NeedsReboot
            // case, we always poll once to give cleanup another opportunity to
            // run.
            break;

        case UpdateState::Unverified:
            // This is an edge case. Normally cancelled updates are detected
            // via the merge poll below, but if we never started a merge, we
            // need to also check here.
            if (HandleCancelledUpdate(lock)) {
                return UpdateState::Cancelled;
            }
            return state;

        default:
            return state;
    }

    std::vector<std::string> snapshots;
    if (!ListSnapshots(lock, &snapshots)) {
        return UpdateState::MergeFailed;
    }

    bool cancelled = false;
    bool failed = false;
    bool merging = false;
    bool needs_reboot = false;
    for (const auto& snapshot : snapshots) {
        UpdateState snapshot_state = CheckTargetMergeState(lock, snapshot);
        switch (snapshot_state) {
            case UpdateState::MergeFailed:
                failed = true;
                break;
            case UpdateState::Merging:
                merging = true;
                break;
            case UpdateState::MergeNeedsReboot:
                needs_reboot = true;
                break;
            case UpdateState::MergeCompleted:
                break;
            case UpdateState::Cancelled:
                cancelled = true;
                break;
            default:
                LOG(ERROR) << "Unknown merge status for \"" << snapshot << "\": "
                           << "\"" << snapshot_state << "\"";
                failed = true;
                break;
        }
    }

    if (merging) {
        // Note that we handle "Merging" before we handle anything else. We
        // want to poll until *nothing* is merging if we can, so everything has
        // a chance to get marked as completed or failed.
        return UpdateState::Merging;
    }
    if (failed) {
        // Note: since there are many drop-out cases for failure, we acknowledge
        // it in WaitForMerge rather than here and elsewhere.
        return UpdateState::MergeFailed;
    }
    if (needs_reboot) {
        WriteUpdateState(lock, UpdateState::MergeNeedsReboot);
        return UpdateState::MergeNeedsReboot;
    }
    if (cancelled) {
        // This is an edge case, that we handle as correctly as we sensibly can.
        // The underlying partition has changed behind update_engine, and we've
        // removed the snapshot as a result. The exact state of the update is
        // undefined now, but this can only happen on an unlocked device where
        // partitions can be flashed without wiping userdata.
        return UpdateState::Cancelled;
    }
    return UpdateState::MergeCompleted;
}

UpdateState SnapshotManager::CheckTargetMergeState(LockedFile* lock, const std::string& name) {
    SnapshotStatus snapshot_status;
    if (!ReadSnapshotStatus(lock, name, &snapshot_status)) {
        return UpdateState::MergeFailed;
    }

    std::string dm_name = GetSnapshotDeviceName(name, snapshot_status);

    std::unique_ptr<LpMetadata> current_metadata;

    if (!IsSnapshotDevice(dm_name)) {
        if (!current_metadata) {
            current_metadata = ReadCurrentMetadata();
        }

        if (!current_metadata ||
            GetMetadataPartitionState(*current_metadata, name) != MetadataPartitionState::Updated) {
            DeleteSnapshot(lock, name);
            return UpdateState::Cancelled;
        }

        // During a check, we decided the merge was complete, but we were unable to
        // collapse the device-mapper stack and perform COW cleanup. If we haven't
        // rebooted after this check, the device will still be a snapshot-merge
        // target. If the have rebooted, the device will now be a linear target,
        // and we can try cleanup again.
        if (snapshot_status.state() == SnapshotState::MERGE_COMPLETED) {
            // NB: It's okay if this fails now, we gave cleanup our best effort.
            OnSnapshotMergeComplete(lock, name, snapshot_status);
            return UpdateState::MergeCompleted;
        }

        LOG(ERROR) << "Expected snapshot or snapshot-merge for device: " << dm_name;
        return UpdateState::MergeFailed;
    }

    // This check is expensive so it is only enabled for debugging.
    DCHECK((current_metadata = ReadCurrentMetadata()) &&
           GetMetadataPartitionState(*current_metadata, name) == MetadataPartitionState::Updated);

    std::string target_type;
    DmTargetSnapshot::Status status;
    if (!QuerySnapshotStatus(dm_name, &target_type, &status)) {
        return UpdateState::MergeFailed;
    }
    if (target_type != "snapshot-merge") {
        // We can get here if we failed to rewrite the target type in
        // InitiateMerge(). If we failed to create the target in first-stage
        // init, boot would not succeed.
        LOG(ERROR) << "Snapshot " << name << " has incorrect target type: " << target_type;
        return UpdateState::MergeFailed;
    }

    // These two values are equal when merging is complete.
    if (status.sectors_allocated != status.metadata_sectors) {
        if (snapshot_status.state() == SnapshotState::MERGE_COMPLETED) {
            LOG(ERROR) << "Snapshot " << name << " is merging after being marked merge-complete.";
            return UpdateState::MergeFailed;
        }
        return UpdateState::Merging;
    }

    // Merging is done. First, update the status file to indicate the merge
    // is complete. We do this before calling OnSnapshotMergeComplete, even
    // though this means the write is potentially wasted work (since in the
    // ideal case we'll immediately delete the file).
    //
    // This makes it simpler to reason about the next reboot: no matter what
    // part of cleanup failed, first-stage init won't try to create another
    // snapshot device for this partition.
    snapshot_status.set_state(SnapshotState::MERGE_COMPLETED);
    if (!WriteSnapshotStatus(lock, snapshot_status)) {
        return UpdateState::MergeFailed;
    }
    if (!OnSnapshotMergeComplete(lock, name, snapshot_status)) {
        return UpdateState::MergeNeedsReboot;
    }
    return UpdateState::MergeCompleted;
}

std::string SnapshotManager::GetSnapshotBootIndicatorPath() {
    return metadata_dir_ + "/" + android::base::Basename(kBootIndicatorPath);
}

std::string SnapshotManager::GetRollbackIndicatorPath() {
    return metadata_dir_ + "/rollback-indicator";
}

void SnapshotManager::AcknowledgeMergeSuccess(LockedFile* lock) {
    RemoveAllUpdateState(lock);
}

void SnapshotManager::AcknowledgeMergeFailure() {
    // Log first, so worst case, we always have a record of why the calls below
    // were being made.
    LOG(ERROR) << "Merge could not be completed and will be marked as failed.";

    auto lock = LockExclusive();
    if (!lock) return;

    // Since we released the lock in between WaitForMerge and here, it's
    // possible (1) the merge successfully completed or (2) was already
    // marked as a failure. So make sure to check the state again, and
    // only mark as a failure if appropriate.
    UpdateState state = ReadUpdateState(lock.get());
    if (state != UpdateState::Merging && state != UpdateState::MergeNeedsReboot) {
        return;
    }

    WriteUpdateState(lock.get(), UpdateState::MergeFailed);
}

bool SnapshotManager::OnSnapshotMergeComplete(LockedFile* lock, const std::string& name,
                                              const SnapshotStatus& status) {
    auto dm_name = GetSnapshotDeviceName(name, status);
    if (IsSnapshotDevice(dm_name)) {
        // We are extra-cautious here, to avoid deleting the wrong table.
        std::string target_type;
        DmTargetSnapshot::Status dm_status;
        if (!QuerySnapshotStatus(dm_name, &target_type, &dm_status)) {
            return false;
        }
        if (target_type != "snapshot-merge") {
            LOG(ERROR) << "Unexpected target type " << target_type
                       << " for snapshot device: " << dm_name;
            return false;
        }
        if (dm_status.sectors_allocated != dm_status.metadata_sectors) {
            LOG(ERROR) << "Merge is unexpectedly incomplete for device " << dm_name;
            return false;
        }
        if (!CollapseSnapshotDevice(name, status)) {
            LOG(ERROR) << "Unable to collapse snapshot: " << name;
            return false;
        }
        // Note that collapsing is implicitly an Unmap, so we don't need to
        // unmap the snapshot.
    }

    if (!DeleteSnapshot(lock, name)) {
        LOG(ERROR) << "Could not delete snapshot: " << name;
        return false;
    }
    return true;
}

bool SnapshotManager::CollapseSnapshotDevice(const std::string& name,
                                             const SnapshotStatus& status) {
    auto& dm = DeviceMapper::Instance();
    auto dm_name = GetSnapshotDeviceName(name, status);

    // Verify we have a snapshot-merge device.
    DeviceMapper::TargetInfo target;
    if (!GetSingleTarget(dm_name, TableQuery::Table, &target)) {
        return false;
    }
    if (DeviceMapper::GetTargetType(target.spec) != "snapshot-merge") {
        // This should be impossible, it was checked earlier.
        LOG(ERROR) << "Snapshot device has invalid target type: " << dm_name;
        return false;
    }

    std::string base_device, cow_device;
    if (!DmTargetSnapshot::GetDevicesFromParams(target.data, &base_device, &cow_device)) {
        LOG(ERROR) << "Could not parse snapshot device " << dm_name
                   << " parameters: " << target.data;
        return false;
    }

    uint64_t snapshot_sectors = status.snapshot_size() / kSectorSize;
    if (snapshot_sectors * kSectorSize != status.snapshot_size()) {
        LOG(ERROR) << "Snapshot " << name
                   << " size is not sector aligned: " << status.snapshot_size();
        return false;
    }

    if (dm_name != name) {
        // We've derived the base device, but we actually need to replace the
        // table of the outermost device. Do a quick verification that this
        // device looks like we expect it to.
        std::vector<DeviceMapper::TargetInfo> outer_table;
        if (!dm.GetTableInfo(name, &outer_table)) {
            LOG(ERROR) << "Could not validate outer snapshot table: " << name;
            return false;
        }
        if (outer_table.size() != 2) {
            LOG(ERROR) << "Expected 2 dm-linear targets for table " << name
                       << ", got: " << outer_table.size();
            return false;
        }
        for (const auto& target : outer_table) {
            auto target_type = DeviceMapper::GetTargetType(target.spec);
            if (target_type != "linear") {
                LOG(ERROR) << "Outer snapshot table may only contain linear targets, but " << name
                           << " has target: " << target_type;
                return false;
            }
        }
        if (outer_table[0].spec.length != snapshot_sectors) {
            LOG(ERROR) << "dm-snapshot " << name << " should have " << snapshot_sectors
                       << " sectors, got: " << outer_table[0].spec.length;
            return false;
        }
        uint64_t expected_device_sectors = status.device_size() / kSectorSize;
        uint64_t actual_device_sectors = outer_table[0].spec.length + outer_table[1].spec.length;
        if (expected_device_sectors != actual_device_sectors) {
            LOG(ERROR) << "Outer device " << name << " should have " << expected_device_sectors
                       << " sectors, got: " << actual_device_sectors;
            return false;
        }
    }

    uint32_t slot = SlotNumberForSlotSuffix(device_->GetSlotSuffix());
    // Create a DmTable that is identical to the base device.
    CreateLogicalPartitionParams base_device_params{
            .block_device = device_->GetSuperDevice(slot),
            .metadata_slot = slot,
            .partition_name = name,
            .partition_opener = &device_->GetPartitionOpener(),
    };
    DmTable table;
    if (!CreateDmTable(base_device_params, &table)) {
        LOG(ERROR) << "Could not create a DmTable for partition: " << name;
        return false;
    }

    // Note: we are replacing the *outer* table here, so we do not use dm_name.
    if (!dm.LoadTableAndActivate(name, table)) {
        return false;
    }

    // Attempt to delete the snapshot device if one still exists. Nothing
    // should be depending on the device, and device-mapper should have
    // flushed remaining I/O. We could in theory replace with dm-zero (or
    // re-use the table above), but for now it's better to know why this
    // would fail.
    if (dm_name != name && !dm.DeleteDeviceIfExists(dm_name)) {
        LOG(ERROR) << "Unable to delete snapshot device " << dm_name << ", COW cannot be "
                   << "reclaimed until after reboot.";
        return false;
    }

    // Cleanup the base device as well, since it is no longer used. This does
    // not block cleanup.
    auto base_name = GetBaseDeviceName(name);
    if (!dm.DeleteDeviceIfExists(base_name)) {
        LOG(ERROR) << "Unable to delete base device for snapshot: " << base_name;
    }
    return true;
}

bool SnapshotManager::HandleCancelledUpdate(LockedFile* lock) {
    auto slot = GetCurrentSlot();
    if (slot == Slot::Unknown) {
        return false;
    }

    // If all snapshots were reflashed, then cancel the entire update.
    if (AreAllSnapshotsCancelled(lock)) {
        RemoveAllUpdateState(lock);
        return true;
    }

    // This unverified update might be rolled back, or it might not (b/147347110
    // comment #77). Take no action, as update_engine is responsible for deciding
    // whether to cancel.
    LOG(ERROR) << "Update state is being processed before reboot, taking no action.";
    return false;
}

std::unique_ptr<LpMetadata> SnapshotManager::ReadCurrentMetadata() {
    const auto& opener = device_->GetPartitionOpener();
    uint32_t slot = SlotNumberForSlotSuffix(device_->GetSlotSuffix());
    auto super_device = device_->GetSuperDevice(slot);
    auto metadata = android::fs_mgr::ReadMetadata(opener, super_device, slot);
    if (!metadata) {
        LOG(ERROR) << "Could not read dynamic partition metadata for device: " << super_device;
        return nullptr;
    }
    return metadata;
}

SnapshotManager::MetadataPartitionState SnapshotManager::GetMetadataPartitionState(
        const LpMetadata& metadata, const std::string& name) {
    auto partition = android::fs_mgr::FindPartition(metadata, name);
    if (!partition) return MetadataPartitionState::None;
    if (partition->attributes & LP_PARTITION_ATTR_UPDATED) {
        return MetadataPartitionState::Updated;
    }
    return MetadataPartitionState::Flashed;
}

bool SnapshotManager::AreAllSnapshotsCancelled(LockedFile* lock) {
    std::vector<std::string> snapshots;
    if (!ListSnapshots(lock, &snapshots)) {
        LOG(WARNING) << "Failed to list snapshots to determine whether device has been flashed "
                     << "after applying an update. Assuming no snapshots.";
        // Let HandleCancelledUpdate resets UpdateState.
        return true;
    }

    auto source_slot_suffix = ReadUpdateSourceSlotSuffix();
    if (source_slot_suffix.empty()) {
        return false;
    }
    uint32_t source_slot = SlotNumberForSlotSuffix(source_slot_suffix);
    uint32_t target_slot = (source_slot == 0) ? 1 : 0;

    // Attempt to detect re-flashing on each partition.
    // - If all partitions are re-flashed, we can proceed to cancel the whole update.
    // - If only some of the partitions are re-flashed, snapshots for re-flashed partitions are
    //   deleted. Caller is responsible for merging the rest of the snapshots.
    // - If none of the partitions are re-flashed, caller is responsible for merging the snapshots.
    //
    // Note that we use target slot metadata, since if an OTA has been applied
    // to the target slot, we can detect the UPDATED flag. Any kind of flash
    // operation against dynamic partitions ensures that all copies of the
    // metadata are in sync, so flashing all partitions on the source slot will
    // remove the UPDATED flag on the target slot as well.
    const auto& opener = device_->GetPartitionOpener();
    auto super_device = device_->GetSuperDevice(target_slot);
    auto metadata = android::fs_mgr::ReadMetadata(opener, super_device, target_slot);
    if (!metadata) {
        return false;
    }

    bool all_snapshots_cancelled = true;
    for (const auto& snapshot_name : snapshots) {
        if (GetMetadataPartitionState(*metadata, snapshot_name) ==
            MetadataPartitionState::Updated) {
            all_snapshots_cancelled = false;
            continue;
        }
        // Delete snapshots for partitions that are re-flashed after the update.
        LOG(WARNING) << "Detected re-flashing of partition " << snapshot_name << ".";
    }
    if (all_snapshots_cancelled) {
        LOG(WARNING) << "All partitions are re-flashed after update, removing all update states.";
    }
    return all_snapshots_cancelled;
}

bool SnapshotManager::RemoveAllSnapshots(LockedFile* lock) {
    std::vector<std::string> snapshots;
    if (!ListSnapshots(lock, &snapshots)) {
        LOG(ERROR) << "Could not list snapshots";
        return false;
    }

    bool ok = true;
    bool has_mapped_cow_images = false;
    for (const auto& name : snapshots) {
        if (!UnmapPartitionWithSnapshot(lock, name) || !DeleteSnapshot(lock, name)) {
            // Remember whether or not we were able to unmap the cow image.
            auto cow_image_device = GetCowImageDeviceName(name);
            has_mapped_cow_images |=
                    (EnsureImageManager() && images_->IsImageMapped(cow_image_device));

            ok = false;
        }
    }

    if (ok || !has_mapped_cow_images) {
        // Delete any image artifacts as a precaution, in case an update is
        // being cancelled due to some corrupted state in an lp_metadata file.
        // Note that we do not do this if some cow images are still mapped,
        // since we must not remove backing storage if it's in use.
        if (!EnsureImageManager() || !images_->RemoveAllImages()) {
            LOG(ERROR) << "Could not remove all snapshot artifacts";
            return false;
        }
    }
    return ok;
}

UpdateState SnapshotManager::GetUpdateState(double* progress) {
    // If we've never started an update, the state file won't exist.
    auto state_file = GetStateFilePath();
    if (access(state_file.c_str(), F_OK) != 0 && errno == ENOENT) {
        return UpdateState::None;
    }

    auto lock = LockShared();
    if (!lock) {
        return UpdateState::None;
    }

    SnapshotUpdateStatus update_status = ReadSnapshotUpdateStatus(lock.get());
    auto state = update_status.state();
    if (progress == nullptr) {
        return state;
    }

    if (state == UpdateState::MergeCompleted) {
        *progress = 100.0;
        return state;
    }

    *progress = 0.0;
    if (state != UpdateState::Merging) {
        return state;
    }

    // Sum all the snapshot states as if the system consists of a single huge
    // snapshots device, then compute the merge completion percentage of that
    // device.
    std::vector<std::string> snapshots;
    if (!ListSnapshots(lock.get(), &snapshots)) {
        LOG(ERROR) << "Could not list snapshots";
        return state;
    }

    DmTargetSnapshot::Status fake_snapshots_status = {};
    for (const auto& snapshot : snapshots) {
        DmTargetSnapshot::Status current_status;

        if (!QuerySnapshotStatus(snapshot, nullptr, &current_status)) continue;

        fake_snapshots_status.sectors_allocated += current_status.sectors_allocated;
        fake_snapshots_status.total_sectors += current_status.total_sectors;
        fake_snapshots_status.metadata_sectors += current_status.metadata_sectors;
    }

    *progress = DmTargetSnapshot::MergePercent(fake_snapshots_status,
                                               update_status.sectors_allocated());

    return state;
}

bool SnapshotManager::ListSnapshots(LockedFile* lock, std::vector<std::string>* snapshots) {
    CHECK(lock);

    auto dir_path = metadata_dir_ + "/snapshots"s;
    std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(dir_path.c_str()), closedir);
    if (!dir) {
        PLOG(ERROR) << "opendir failed: " << dir_path;
        return false;
    }

    struct dirent* dp;
    while ((dp = readdir(dir.get())) != nullptr) {
        if (dp->d_type != DT_REG) continue;
        snapshots->emplace_back(dp->d_name);
    }
    return true;
}

bool SnapshotManager::IsSnapshotManagerNeeded() {
    return access(kBootIndicatorPath, F_OK) == 0;
}

bool SnapshotManager::NeedSnapshotsInFirstStageMount() {
    // If we fail to read, we'll wind up using CreateLogicalPartitions, which
    // will create devices that look like the old slot, except with extra
    // content at the end of each device. This will confuse dm-verity, and
    // ultimately we'll fail to boot. Why not make it a fatal error and have
    // the reason be clearer? Because the indicator file still exists, and
    // if this was FATAL, reverting to the old slot would be broken.
    auto slot = GetCurrentSlot();

    if (slot != Slot::Target) {
        if (slot == Slot::Source && !device_->IsRecovery()) {
            // Device is rebooting into the original slot, so mark this as a
            // rollback.
            auto path = GetRollbackIndicatorPath();
            if (!android::base::WriteStringToFile("1", path)) {
                PLOG(ERROR) << "Unable to write rollback indicator: " << path;
            }
        }
        LOG(INFO) << "Not booting from new slot. Will not mount snapshots.";
        return false;
    }

    // If we can't read the update state, it's unlikely anything else will
    // succeed, so this is a fatal error. We'll eventually exhaust boot
    // attempts and revert to the old slot.
    auto lock = LockShared();
    if (!lock) {
        LOG(FATAL) << "Could not read update state to determine snapshot status";
        return false;
    }
    switch (ReadUpdateState(lock.get())) {
        case UpdateState::Unverified:
        case UpdateState::Merging:
        case UpdateState::MergeFailed:
            return true;
        default:
            return false;
    }
}

bool SnapshotManager::CreateLogicalAndSnapshotPartitions(
        const std::string& super_device, const std::chrono::milliseconds& timeout_ms) {
    LOG(INFO) << "Creating logical partitions with snapshots as needed";

    auto lock = LockExclusive();
    if (!lock) return false;

    const auto& opener = device_->GetPartitionOpener();
    uint32_t slot = SlotNumberForSlotSuffix(device_->GetSlotSuffix());
    auto metadata = android::fs_mgr::ReadMetadata(opener, super_device, slot);
    if (!metadata) {
        LOG(ERROR) << "Could not read dynamic partition metadata for device: " << super_device;
        return false;
    }

    for (const auto& partition : metadata->partitions) {
        if (GetPartitionGroupName(metadata->groups[partition.group_index]) == kCowGroupName) {
            LOG(INFO) << "Skip mapping partition " << GetPartitionName(partition) << " in group "
                      << kCowGroupName;
            continue;
        }

        CreateLogicalPartitionParams params = {
                .block_device = super_device,
                .metadata = metadata.get(),
                .partition = &partition,
                .partition_opener = &opener,
                .timeout_ms = timeout_ms,
        };
        std::string ignore_path;
        if (!MapPartitionWithSnapshot(lock.get(), std::move(params), &ignore_path)) {
            return false;
        }
    }

    LOG(INFO) << "Created logical partitions with snapshot.";
    return true;
}

static std::chrono::milliseconds GetRemainingTime(
        const std::chrono::milliseconds& timeout,
        const std::chrono::time_point<std::chrono::steady_clock>& begin) {
    // If no timeout is specified, execute all commands without specifying any timeout.
    if (timeout.count() == 0) return std::chrono::milliseconds(0);
    auto passed_time = std::chrono::steady_clock::now() - begin;
    auto remaining_time = timeout - duration_cast<std::chrono::milliseconds>(passed_time);
    if (remaining_time.count() <= 0) {
        LOG(ERROR) << "MapPartitionWithSnapshot has reached timeout " << timeout.count() << "ms ("
                   << remaining_time.count() << "ms remaining)";
        // Return min() instead of remaining_time here because 0 is treated as a special value for
        // no timeout, where the rest of the commands will still be executed.
        return std::chrono::milliseconds::min();
    }
    return remaining_time;
}

bool SnapshotManager::MapPartitionWithSnapshot(LockedFile* lock,
                                               CreateLogicalPartitionParams params,
                                               std::string* path) {
    auto begin = std::chrono::steady_clock::now();

    CHECK(lock);
    path->clear();

    if (params.GetPartitionName() != params.GetDeviceName()) {
        LOG(ERROR) << "Mapping snapshot with a different name is unsupported: partition_name = "
                   << params.GetPartitionName() << ", device_name = " << params.GetDeviceName();
        return false;
    }

    // Fill out fields in CreateLogicalPartitionParams so that we have more information (e.g. by
    // reading super partition metadata).
    CreateLogicalPartitionParams::OwnedData params_owned_data;
    if (!params.InitDefaults(&params_owned_data)) {
        return false;
    }

    if (!params.partition->num_extents) {
        LOG(INFO) << "Skipping zero-length logical partition: " << params.GetPartitionName();
        return true;  // leave path empty to indicate that nothing is mapped.
    }

    // Determine if there is a live snapshot for the SnapshotStatus of the partition; i.e. if the
    // partition still has a snapshot that needs to be mapped.  If no live snapshot or merge
    // completed, live_snapshot_status is set to nullopt.
    std::optional<SnapshotStatus> live_snapshot_status;
    do {
        if (!(params.partition->attributes & LP_PARTITION_ATTR_UPDATED)) {
            LOG(INFO) << "Detected re-flashing of partition, will skip snapshot: "
                      << params.GetPartitionName();
            break;
        }
        auto file_path = GetSnapshotStatusFilePath(params.GetPartitionName());
        if (access(file_path.c_str(), F_OK) != 0) {
            if (errno != ENOENT) {
                PLOG(INFO) << "Can't map snapshot for " << params.GetPartitionName()
                           << ": Can't access " << file_path;
                return false;
            }
            break;
        }
        live_snapshot_status = std::make_optional<SnapshotStatus>();
        if (!ReadSnapshotStatus(lock, params.GetPartitionName(), &*live_snapshot_status)) {
            return false;
        }
        // No live snapshot if merge is completed.
        if (live_snapshot_status->state() == SnapshotState::MERGE_COMPLETED) {
            live_snapshot_status.reset();
        }

        if (live_snapshot_status->state() == SnapshotState::NONE ||
            live_snapshot_status->cow_partition_size() + live_snapshot_status->cow_file_size() ==
                    0) {
            LOG(WARNING) << "Snapshot status for " << params.GetPartitionName()
                         << " is invalid, ignoring: state = "
                         << SnapshotState_Name(live_snapshot_status->state())
                         << ", cow_partition_size = " << live_snapshot_status->cow_partition_size()
                         << ", cow_file_size = " << live_snapshot_status->cow_file_size();
            live_snapshot_status.reset();
        }
    } while (0);

    if (live_snapshot_status.has_value()) {
        // dm-snapshot requires the base device to be writable.
        params.force_writable = true;
        // Map the base device with a different name to avoid collision.
        params.device_name = GetBaseDeviceName(params.GetPartitionName());
    }

    AutoDeviceList created_devices;

    // Create the base device for the snapshot, or if there is no snapshot, the
    // device itself. This device consists of the real blocks in the super
    // partition that this logical partition occupies.
    auto& dm = DeviceMapper::Instance();
    std::string base_path;
    if (!CreateLogicalPartition(params, &base_path)) {
        LOG(ERROR) << "Could not create logical partition " << params.GetPartitionName()
                   << " as device " << params.GetDeviceName();
        return false;
    }
    created_devices.EmplaceBack<AutoUnmapDevice>(&dm, params.GetDeviceName());

    if (!live_snapshot_status.has_value()) {
        *path = base_path;
        created_devices.Release();
        return true;
    }

    // We don't have ueventd in first-stage init, so use device major:minor
    // strings instead.
    std::string base_device;
    if (!dm.GetDeviceString(params.GetDeviceName(), &base_device)) {
        LOG(ERROR) << "Could not determine major/minor for: " << params.GetDeviceName();
        return false;
    }

    auto remaining_time = GetRemainingTime(params.timeout_ms, begin);
    if (remaining_time.count() < 0) return false;

    std::string cow_name;
    CreateLogicalPartitionParams cow_params = params;
    cow_params.timeout_ms = remaining_time;
    if (!MapCowDevices(lock, cow_params, *live_snapshot_status, &created_devices, &cow_name)) {
        return false;
    }
    std::string cow_device;
    if (!dm.GetDeviceString(cow_name, &cow_device)) {
        LOG(ERROR) << "Could not determine major/minor for: " << cow_name;
        return false;
    }

    remaining_time = GetRemainingTime(params.timeout_ms, begin);
    if (remaining_time.count() < 0) return false;

    if (!MapSnapshot(lock, params.GetPartitionName(), base_device, cow_device, remaining_time,
                     path)) {
        LOG(ERROR) << "Could not map snapshot for partition: " << params.GetPartitionName();
        return false;
    }
    // No need to add params.GetPartitionName() to created_devices since it is immediately released.

    created_devices.Release();

    LOG(INFO) << "Mapped " << params.GetPartitionName() << " as snapshot device at " << *path;

    return true;
}

bool SnapshotManager::UnmapPartitionWithSnapshot(LockedFile* lock,
                                                 const std::string& target_partition_name) {
    CHECK(lock);

    if (!UnmapSnapshot(lock, target_partition_name)) {
        return false;
    }

    if (!UnmapCowDevices(lock, target_partition_name)) {
        return false;
    }

    auto& dm = DeviceMapper::Instance();
    std::string base_name = GetBaseDeviceName(target_partition_name);
    if (!dm.DeleteDeviceIfExists(base_name)) {
        LOG(ERROR) << "Cannot delete base device: " << base_name;
        return false;
    }

    LOG(INFO) << "Successfully unmapped snapshot " << target_partition_name;

    return true;
}

bool SnapshotManager::MapCowDevices(LockedFile* lock, const CreateLogicalPartitionParams& params,
                                    const SnapshotStatus& snapshot_status,
                                    AutoDeviceList* created_devices, std::string* cow_name) {
    CHECK(lock);
    CHECK(snapshot_status.cow_partition_size() + snapshot_status.cow_file_size() > 0);
    auto begin = std::chrono::steady_clock::now();

    std::string partition_name = params.GetPartitionName();
    std::string cow_image_name = GetCowImageDeviceName(partition_name);
    *cow_name = GetCowName(partition_name);

    auto& dm = DeviceMapper::Instance();

    // Map COW image if necessary.
    if (snapshot_status.cow_file_size() > 0) {
        if (!EnsureImageManager()) return false;
        auto remaining_time = GetRemainingTime(params.timeout_ms, begin);
        if (remaining_time.count() < 0) return false;

        if (!MapCowImage(partition_name, remaining_time).has_value()) {
            LOG(ERROR) << "Could not map cow image for partition: " << partition_name;
            return false;
        }
        created_devices->EmplaceBack<AutoUnmapImage>(images_.get(), cow_image_name);

        // If no COW partition exists, just return the image alone.
        if (snapshot_status.cow_partition_size() == 0) {
            *cow_name = std::move(cow_image_name);
            LOG(INFO) << "Mapped COW image for " << partition_name << " at " << *cow_name;
            return true;
        }
    }

    auto remaining_time = GetRemainingTime(params.timeout_ms, begin);
    if (remaining_time.count() < 0) return false;

    CHECK(snapshot_status.cow_partition_size() > 0);

    // Create the DmTable for the COW device. It is the DmTable of the COW partition plus
    // COW image device as the last extent.
    CreateLogicalPartitionParams cow_partition_params = params;
    cow_partition_params.partition = nullptr;
    cow_partition_params.partition_name = *cow_name;
    cow_partition_params.device_name.clear();
    DmTable table;
    if (!CreateDmTable(cow_partition_params, &table)) {
        return false;
    }
    // If the COW image exists, append it as the last extent.
    if (snapshot_status.cow_file_size() > 0) {
        std::string cow_image_device;
        if (!dm.GetDeviceString(cow_image_name, &cow_image_device)) {
            LOG(ERROR) << "Cannot determine major/minor for: " << cow_image_name;
            return false;
        }
        auto cow_partition_sectors = snapshot_status.cow_partition_size() / kSectorSize;
        auto cow_image_sectors = snapshot_status.cow_file_size() / kSectorSize;
        table.Emplace<DmTargetLinear>(cow_partition_sectors, cow_image_sectors, cow_image_device,
                                      0);
    }

    // We have created the DmTable now. Map it.
    std::string cow_path;
    if (!dm.CreateDevice(*cow_name, table, &cow_path, remaining_time)) {
        LOG(ERROR) << "Could not create COW device: " << *cow_name;
        return false;
    }
    created_devices->EmplaceBack<AutoUnmapDevice>(&dm, *cow_name);
    LOG(INFO) << "Mapped COW device for " << params.GetPartitionName() << " at " << cow_path;
    return true;
}

bool SnapshotManager::UnmapCowDevices(LockedFile* lock, const std::string& name) {
    CHECK(lock);
    if (!EnsureImageManager()) return false;

    auto& dm = DeviceMapper::Instance();
    auto cow_name = GetCowName(name);
    if (!dm.DeleteDeviceIfExists(cow_name)) {
        LOG(ERROR) << "Cannot unmap " << cow_name;
        return false;
    }

    std::string cow_image_name = GetCowImageDeviceName(name);
    if (!images_->UnmapImageIfExists(cow_image_name)) {
        LOG(ERROR) << "Cannot unmap image " << cow_image_name;
        return false;
    }
    return true;
}

auto SnapshotManager::OpenFile(const std::string& file, int lock_flags)
        -> std::unique_ptr<LockedFile> {
    unique_fd fd(open(file.c_str(), O_RDONLY | O_CLOEXEC | O_NOFOLLOW));
    if (fd < 0) {
        PLOG(ERROR) << "Open failed: " << file;
        return nullptr;
    }
    if (lock_flags != 0 && flock(fd, lock_flags) < 0) {
        PLOG(ERROR) << "Acquire flock failed: " << file;
        return nullptr;
    }
    // For simplicity, we want to CHECK that lock_mode == LOCK_EX, in some
    // calls, so strip extra flags.
    int lock_mode = lock_flags & (LOCK_EX | LOCK_SH);
    return std::make_unique<LockedFile>(file, std::move(fd), lock_mode);
}

SnapshotManager::LockedFile::~LockedFile() {
    if (flock(fd_, LOCK_UN) < 0) {
        PLOG(ERROR) << "Failed to unlock file: " << path_;
    }
}

std::string SnapshotManager::GetStateFilePath() const {
    return metadata_dir_ + "/state"s;
}

std::string SnapshotManager::GetLockPath() const {
    return metadata_dir_;
}

std::unique_ptr<SnapshotManager::LockedFile> SnapshotManager::OpenLock(int lock_flags) {
    auto lock_file = GetLockPath();
    return OpenFile(lock_file, lock_flags);
}

std::unique_ptr<SnapshotManager::LockedFile> SnapshotManager::LockShared() {
    return OpenLock(LOCK_SH);
}

std::unique_ptr<SnapshotManager::LockedFile> SnapshotManager::LockExclusive() {
    return OpenLock(LOCK_EX);
}

static UpdateState UpdateStateFromString(const std::string& contents) {
    if (contents.empty() || contents == "none") {
        return UpdateState::None;
    } else if (contents == "initiated") {
        return UpdateState::Initiated;
    } else if (contents == "unverified") {
        return UpdateState::Unverified;
    } else if (contents == "merging") {
        return UpdateState::Merging;
    } else if (contents == "merge-completed") {
        return UpdateState::MergeCompleted;
    } else if (contents == "merge-needs-reboot") {
        return UpdateState::MergeNeedsReboot;
    } else if (contents == "merge-failed") {
        return UpdateState::MergeFailed;
    } else if (contents == "cancelled") {
        return UpdateState::Cancelled;
    } else {
        LOG(ERROR) << "Unknown merge state in update state file: \"" << contents << "\"";
        return UpdateState::None;
    }
}

std::ostream& operator<<(std::ostream& os, UpdateState state) {
    switch (state) {
        case UpdateState::None:
            return os << "none";
        case UpdateState::Initiated:
            return os << "initiated";
        case UpdateState::Unverified:
            return os << "unverified";
        case UpdateState::Merging:
            return os << "merging";
        case UpdateState::MergeCompleted:
            return os << "merge-completed";
        case UpdateState::MergeNeedsReboot:
            return os << "merge-needs-reboot";
        case UpdateState::MergeFailed:
            return os << "merge-failed";
        case UpdateState::Cancelled:
            return os << "cancelled";
        default:
            LOG(ERROR) << "Unknown update state: " << static_cast<uint32_t>(state);
            return os;
    }
}

UpdateState SnapshotManager::ReadUpdateState(LockedFile* lock) {
    SnapshotUpdateStatus status = ReadSnapshotUpdateStatus(lock);
    return status.state();
}

SnapshotUpdateStatus SnapshotManager::ReadSnapshotUpdateStatus(LockedFile* lock) {
    CHECK(lock);

    SnapshotUpdateStatus status = {};
    std::string contents;
    if (!android::base::ReadFileToString(GetStateFilePath(), &contents)) {
        PLOG(ERROR) << "Read state file failed";
        status.set_state(UpdateState::None);
        return status;
    }

    if (!status.ParseFromString(contents)) {
        LOG(WARNING) << "Unable to parse state file as SnapshotUpdateStatus, using the old format";

        // Try to rollback to legacy file to support devices that are
        // currently using the old file format.
        // TODO(b/147409432)
        status.set_state(UpdateStateFromString(contents));
    }

    return status;
}

bool SnapshotManager::WriteUpdateState(LockedFile* lock, UpdateState state) {
    SnapshotUpdateStatus status = {};
    status.set_state(state);
    return WriteSnapshotUpdateStatus(lock, status);
}

bool SnapshotManager::WriteSnapshotUpdateStatus(LockedFile* lock,
                                                const SnapshotUpdateStatus& status) {
    CHECK(lock);
    CHECK(lock->lock_mode() == LOCK_EX);

    std::string contents;
    if (!status.SerializeToString(&contents)) {
        LOG(ERROR) << "Unable to serialize SnapshotUpdateStatus.";
        return false;
    }

#ifdef LIBSNAPSHOT_USE_HAL
    auto merge_status = MergeStatus::UNKNOWN;
    switch (status.state()) {
        // The needs-reboot and completed cases imply that /data and /metadata
        // can be safely wiped, so we don't report a merge status.
        case UpdateState::None:
        case UpdateState::MergeNeedsReboot:
        case UpdateState::MergeCompleted:
        case UpdateState::Initiated:
            merge_status = MergeStatus::NONE;
            break;
        case UpdateState::Unverified:
            merge_status = MergeStatus::SNAPSHOTTED;
            break;
        case UpdateState::Merging:
        case UpdateState::MergeFailed:
            merge_status = MergeStatus::MERGING;
            break;
        default:
            // Note that Cancelled flows to here - it is never written, since
            // it only communicates a transient state to the caller.
            LOG(ERROR) << "Unexpected update status: " << status.state();
            break;
    }

    bool set_before_write =
            merge_status == MergeStatus::SNAPSHOTTED || merge_status == MergeStatus::MERGING;
    if (set_before_write && !device_->SetBootControlMergeStatus(merge_status)) {
        return false;
    }
#endif

    if (!WriteStringToFileAtomic(contents, GetStateFilePath())) {
        PLOG(ERROR) << "Could not write to state file";
        return false;
    }

#ifdef LIBSNAPSHOT_USE_HAL
    if (!set_before_write && !device_->SetBootControlMergeStatus(merge_status)) {
        return false;
    }
#endif
    return true;
}

std::string SnapshotManager::GetSnapshotStatusFilePath(const std::string& name) {
    auto file = metadata_dir_ + "/snapshots/"s + name;
    return file;
}

bool SnapshotManager::ReadSnapshotStatus(LockedFile* lock, const std::string& name,
                                         SnapshotStatus* status) {
    CHECK(lock);
    auto path = GetSnapshotStatusFilePath(name);

    unique_fd fd(open(path.c_str(), O_RDONLY | O_CLOEXEC | O_NOFOLLOW));
    if (fd < 0) {
        PLOG(ERROR) << "Open failed: " << path;
        return false;
    }

    if (!status->ParseFromFileDescriptor(fd.get())) {
        PLOG(ERROR) << "Unable to parse " << path << " as SnapshotStatus";
        return false;
    }

    if (status->name() != name) {
        LOG(WARNING) << "Found snapshot status named " << status->name() << " in " << path;
        status->set_name(name);
    }

    return true;
}

bool SnapshotManager::WriteSnapshotStatus(LockedFile* lock, const SnapshotStatus& status) {
    // The caller must take an exclusive lock to modify snapshots.
    CHECK(lock);
    CHECK(lock->lock_mode() == LOCK_EX);
    CHECK(!status.name().empty());

    auto path = GetSnapshotStatusFilePath(status.name());

    std::string content;
    if (!status.SerializeToString(&content)) {
        LOG(ERROR) << "Unable to serialize SnapshotStatus for " << status.name();
        return false;
    }

    if (!WriteStringToFileAtomic(content, path)) {
        PLOG(ERROR) << "Unable to write SnapshotStatus to " << path;
        return false;
    }

    return true;
}

std::string SnapshotManager::GetSnapshotDeviceName(const std::string& snapshot_name,
                                                   const SnapshotStatus& status) {
    if (status.device_size() != status.snapshot_size()) {
        return GetSnapshotExtraDeviceName(snapshot_name);
    }
    return snapshot_name;
}

bool SnapshotManager::EnsureImageManager() {
    if (images_) return true;

    // For now, use a preset timeout.
    images_ = android::fiemap::IImageManager::Open(gsid_dir_, 15000ms);
    if (!images_) {
        LOG(ERROR) << "Could not open ImageManager";
        return false;
    }
    return true;
}

bool SnapshotManager::ForceLocalImageManager() {
    images_ = android::fiemap::ImageManager::Open(gsid_dir_);
    if (!images_) {
        LOG(ERROR) << "Could not open ImageManager";
        return false;
    }
    has_local_image_manager_ = true;
    return true;
}

static void UnmapAndDeleteCowPartition(MetadataBuilder* current_metadata) {
    auto& dm = DeviceMapper::Instance();
    std::vector<std::string> to_delete;
    for (auto* existing_cow_partition : current_metadata->ListPartitionsInGroup(kCowGroupName)) {
        if (!dm.DeleteDeviceIfExists(existing_cow_partition->name())) {
            LOG(WARNING) << existing_cow_partition->name()
                         << " cannot be unmapped and its space cannot be reclaimed";
            continue;
        }
        to_delete.push_back(existing_cow_partition->name());
    }
    for (const auto& name : to_delete) {
        current_metadata->RemovePartition(name);
    }
}

static Return AddRequiredSpace(Return orig,
                               const std::map<std::string, SnapshotStatus>& all_snapshot_status) {
    if (orig.error_code() != Return::ErrorCode::NO_SPACE) {
        return orig;
    }
    uint64_t sum = 0;
    for (auto&& [name, status] : all_snapshot_status) {
        sum += status.cow_file_size();
    }
    return Return::NoSpace(sum);
}

Return SnapshotManager::CreateUpdateSnapshots(const DeltaArchiveManifest& manifest) {
    auto lock = LockExclusive();
    if (!lock) return Return::Error();

    // TODO(b/134949511): remove this check. Right now, with overlayfs mounted, the scratch
    // partition takes up a big chunk of space in super, causing COW images to be created on
    // retrofit Virtual A/B devices.
    if (device_->IsOverlayfsSetup()) {
        LOG(ERROR) << "Cannot create update snapshots with overlayfs setup. Run `adb enable-verity`"
                   << ", reboot, then try again.";
        return Return::Error();
    }

    const auto& opener = device_->GetPartitionOpener();
    auto current_suffix = device_->GetSlotSuffix();
    uint32_t current_slot = SlotNumberForSlotSuffix(current_suffix);
    auto target_suffix = device_->GetOtherSlotSuffix();
    uint32_t target_slot = SlotNumberForSlotSuffix(target_suffix);
    auto current_super = device_->GetSuperDevice(current_slot);

    auto current_metadata = MetadataBuilder::New(opener, current_super, current_slot);
    if (current_metadata == nullptr) {
        LOG(ERROR) << "Cannot create metadata builder.";
        return Return::Error();
    }

    auto target_metadata =
            MetadataBuilder::NewForUpdate(opener, current_super, current_slot, target_slot);
    if (target_metadata == nullptr) {
        LOG(ERROR) << "Cannot create target metadata builder.";
        return Return::Error();
    }

    // Delete partitions with target suffix in |current_metadata|. Otherwise,
    // partition_cow_creator recognizes these left-over partitions as used space.
    for (const auto& group_name : current_metadata->ListGroups()) {
        if (android::base::EndsWith(group_name, target_suffix)) {
            current_metadata->RemoveGroupAndPartitions(group_name);
        }
    }

    SnapshotMetadataUpdater metadata_updater(target_metadata.get(), target_slot, manifest);
    if (!metadata_updater.Update()) {
        LOG(ERROR) << "Cannot calculate new metadata.";
        return Return::Error();
    }

    // Delete previous COW partitions in current_metadata so that PartitionCowCreator marks those as
    // free regions.
    UnmapAndDeleteCowPartition(current_metadata.get());

    // Check that all these metadata is not retrofit dynamic partitions. Snapshots on
    // devices with retrofit dynamic partitions does not make sense.
    // This ensures that current_metadata->GetFreeRegions() uses the same device
    // indices as target_metadata (i.e. 0 -> "super").
    // This is also assumed in MapCowDevices() call below.
    CHECK(current_metadata->GetBlockDevicePartitionName(0) == LP_METADATA_DEFAULT_PARTITION_NAME &&
          target_metadata->GetBlockDevicePartitionName(0) == LP_METADATA_DEFAULT_PARTITION_NAME);

    std::map<std::string, SnapshotStatus> all_snapshot_status;

    // In case of error, automatically delete devices that are created along the way.
    // Note that "lock" is destroyed after "created_devices", so it is safe to use |lock| for
    // these devices.
    AutoDeviceList created_devices;

    PartitionCowCreator cow_creator{
            .target_metadata = target_metadata.get(),
            .target_suffix = target_suffix,
            .target_partition = nullptr,
            .current_metadata = current_metadata.get(),
            .current_suffix = current_suffix,
            .operations = nullptr,
            .extra_extents = {},
    };

    auto ret = CreateUpdateSnapshotsInternal(lock.get(), manifest, &cow_creator, &created_devices,
                                             &all_snapshot_status);
    if (!ret.is_ok()) return ret;

    auto exported_target_metadata = target_metadata->Export();
    if (exported_target_metadata == nullptr) {
        LOG(ERROR) << "Cannot export target metadata";
        return Return::Error();
    }

    ret = InitializeUpdateSnapshots(lock.get(), target_metadata.get(),
                                    exported_target_metadata.get(), target_suffix,
                                    all_snapshot_status);
    if (!ret.is_ok()) return ret;

    if (!UpdatePartitionTable(opener, device_->GetSuperDevice(target_slot),
                              *exported_target_metadata, target_slot)) {
        LOG(ERROR) << "Cannot write target metadata";
        return Return::Error();
    }

    created_devices.Release();
    LOG(INFO) << "Successfully created all snapshots for target slot " << target_suffix;

    return Return::Ok();
}

Return SnapshotManager::CreateUpdateSnapshotsInternal(
        LockedFile* lock, const DeltaArchiveManifest& manifest, PartitionCowCreator* cow_creator,
        AutoDeviceList* created_devices,
        std::map<std::string, SnapshotStatus>* all_snapshot_status) {
    CHECK(lock);

    auto* target_metadata = cow_creator->target_metadata;
    const auto& target_suffix = cow_creator->target_suffix;

    if (!target_metadata->AddGroup(kCowGroupName, 0)) {
        LOG(ERROR) << "Cannot add group " << kCowGroupName;
        return Return::Error();
    }

    std::map<std::string, const RepeatedPtrField<InstallOperation>*> install_operation_map;
    std::map<std::string, std::vector<Extent>> extra_extents_map;
    for (const auto& partition_update : manifest.partitions()) {
        auto suffixed_name = partition_update.partition_name() + target_suffix;
        auto&& [it, inserted] =
                install_operation_map.emplace(suffixed_name, &partition_update.operations());
        if (!inserted) {
            LOG(ERROR) << "Duplicated partition " << partition_update.partition_name()
                       << " in update manifest.";
            return Return::Error();
        }

        auto& extra_extents = extra_extents_map[suffixed_name];
        if (partition_update.has_hash_tree_extent()) {
            extra_extents.push_back(partition_update.hash_tree_extent());
        }
        if (partition_update.has_fec_extent()) {
            extra_extents.push_back(partition_update.fec_extent());
        }
    }

    for (auto* target_partition : ListPartitionsWithSuffix(target_metadata, target_suffix)) {
        cow_creator->target_partition = target_partition;
        cow_creator->operations = nullptr;
        auto operations_it = install_operation_map.find(target_partition->name());
        if (operations_it != install_operation_map.end()) {
            cow_creator->operations = operations_it->second;
        }

        cow_creator->extra_extents.clear();
        auto extra_extents_it = extra_extents_map.find(target_partition->name());
        if (extra_extents_it != extra_extents_map.end()) {
            cow_creator->extra_extents = std::move(extra_extents_it->second);
        }

        // Compute the device sizes for the partition.
        auto cow_creator_ret = cow_creator->Run();
        if (!cow_creator_ret.has_value()) {
            return Return::Error();
        }

        LOG(INFO) << "For partition " << target_partition->name()
                  << ", device size = " << cow_creator_ret->snapshot_status.device_size()
                  << ", snapshot size = " << cow_creator_ret->snapshot_status.snapshot_size()
                  << ", cow partition size = "
                  << cow_creator_ret->snapshot_status.cow_partition_size()
                  << ", cow file size = " << cow_creator_ret->snapshot_status.cow_file_size();

        // Delete any existing snapshot before re-creating one.
        if (!DeleteSnapshot(lock, target_partition->name())) {
            LOG(ERROR) << "Cannot delete existing snapshot before creating a new one for partition "
                       << target_partition->name();
            return Return::Error();
        }

        // It is possible that the whole partition uses free space in super, and snapshot / COW
        // would not be needed. In this case, skip the partition.
        bool needs_snapshot = cow_creator_ret->snapshot_status.snapshot_size() > 0;
        bool needs_cow = (cow_creator_ret->snapshot_status.cow_partition_size() +
                          cow_creator_ret->snapshot_status.cow_file_size()) > 0;
        CHECK(needs_snapshot == needs_cow);

        if (!needs_snapshot) {
            LOG(INFO) << "Skip creating snapshot for partition " << target_partition->name()
                      << "because nothing needs to be snapshotted.";
            continue;
        }

        // Store these device sizes to snapshot status file.
        if (!CreateSnapshot(lock, &cow_creator_ret->snapshot_status)) {
            return Return::Error();
        }
        created_devices->EmplaceBack<AutoDeleteSnapshot>(this, lock, target_partition->name());

        // Create the COW partition. That is, use any remaining free space in super partition before
        // creating the COW images.
        if (cow_creator_ret->snapshot_status.cow_partition_size() > 0) {
            CHECK(cow_creator_ret->snapshot_status.cow_partition_size() % kSectorSize == 0)
                    << "cow_partition_size == "
                    << cow_creator_ret->snapshot_status.cow_partition_size()
                    << " is not a multiple of sector size " << kSectorSize;
            auto cow_partition = target_metadata->AddPartition(GetCowName(target_partition->name()),
                                                               kCowGroupName, 0 /* flags */);
            if (cow_partition == nullptr) {
                return Return::Error();
            }

            if (!target_metadata->ResizePartition(
                        cow_partition, cow_creator_ret->snapshot_status.cow_partition_size(),
                        cow_creator_ret->cow_partition_usable_regions)) {
                LOG(ERROR) << "Cannot create COW partition on metadata with size "
                           << cow_creator_ret->snapshot_status.cow_partition_size();
                return Return::Error();
            }
            // Only the in-memory target_metadata is modified; nothing to clean up if there is an
            // error in the future.
        }

        all_snapshot_status->emplace(target_partition->name(),
                                     std::move(cow_creator_ret->snapshot_status));

        LOG(INFO) << "Successfully created snapshot partition for " << target_partition->name();
    }

    LOG(INFO) << "Allocating CoW images.";

    for (auto&& [name, snapshot_status] : *all_snapshot_status) {
        // Create the backing COW image if necessary.
        if (snapshot_status.cow_file_size() > 0) {
            auto ret = CreateCowImage(lock, name);
            if (!ret.is_ok()) return AddRequiredSpace(ret, *all_snapshot_status);
        }

        LOG(INFO) << "Successfully created snapshot for " << name;
    }

    return Return::Ok();
}

Return SnapshotManager::InitializeUpdateSnapshots(
        LockedFile* lock, MetadataBuilder* target_metadata,
        const LpMetadata* exported_target_metadata, const std::string& target_suffix,
        const std::map<std::string, SnapshotStatus>& all_snapshot_status) {
    CHECK(lock);

    auto& dm = DeviceMapper::Instance();
    CreateLogicalPartitionParams cow_params{
            .block_device = LP_METADATA_DEFAULT_PARTITION_NAME,
            .metadata = exported_target_metadata,
            .timeout_ms = std::chrono::milliseconds::max(),
            .partition_opener = &device_->GetPartitionOpener(),
    };
    for (auto* target_partition : ListPartitionsWithSuffix(target_metadata, target_suffix)) {
        AutoDeviceList created_devices_for_cow;

        if (!UnmapPartitionWithSnapshot(lock, target_partition->name())) {
            LOG(ERROR) << "Cannot unmap existing COW devices before re-mapping them for zero-fill: "
                       << target_partition->name();
            return Return::Error();
        }

        auto it = all_snapshot_status.find(target_partition->name());
        if (it == all_snapshot_status.end()) continue;
        cow_params.partition_name = target_partition->name();
        std::string cow_name;
        if (!MapCowDevices(lock, cow_params, it->second, &created_devices_for_cow, &cow_name)) {
            return Return::Error();
        }

        std::string cow_path;
        if (!dm.GetDmDevicePathByName(cow_name, &cow_path)) {
            LOG(ERROR) << "Cannot determine path for " << cow_name;
            return Return::Error();
        }

        auto ret = InitializeCow(cow_path);
        if (!ret.is_ok()) {
            LOG(ERROR) << "Can't zero-fill COW device for " << target_partition->name() << ": "
                       << cow_path;
            return AddRequiredSpace(ret, all_snapshot_status);
        }
        // Let destructor of created_devices_for_cow to unmap the COW devices.
    };
    return Return::Ok();
}

bool SnapshotManager::MapUpdateSnapshot(const CreateLogicalPartitionParams& params,
                                        std::string* snapshot_path) {
    auto lock = LockShared();
    if (!lock) return false;
    if (!UnmapPartitionWithSnapshot(lock.get(), params.GetPartitionName())) {
        LOG(ERROR) << "Cannot unmap existing snapshot before re-mapping it: "
                   << params.GetPartitionName();
        return false;
    }
    return MapPartitionWithSnapshot(lock.get(), params, snapshot_path);
}

bool SnapshotManager::UnmapUpdateSnapshot(const std::string& target_partition_name) {
    auto lock = LockShared();
    if (!lock) return false;
    return UnmapPartitionWithSnapshot(lock.get(), target_partition_name);
}

bool SnapshotManager::UnmapAllPartitions() {
    auto lock = LockExclusive();
    if (!lock) return false;

    const auto& opener = device_->GetPartitionOpener();
    uint32_t slot = SlotNumberForSlotSuffix(device_->GetSlotSuffix());
    auto super_device = device_->GetSuperDevice(slot);
    auto metadata = android::fs_mgr::ReadMetadata(opener, super_device, slot);
    if (!metadata) {
        LOG(ERROR) << "Could not read dynamic partition metadata for device: " << super_device;
        return false;
    }

    bool ok = true;
    for (const auto& partition : metadata->partitions) {
        auto partition_name = GetPartitionName(partition);
        ok &= UnmapPartitionWithSnapshot(lock.get(), partition_name);
    }
    return ok;
}

std::ostream& operator<<(std::ostream& os, SnapshotManager::Slot slot) {
    switch (slot) {
        case SnapshotManager::Slot::Unknown:
            return os << "unknown";
        case SnapshotManager::Slot::Source:
            return os << "source";
        case SnapshotManager::Slot::Target:
            return os << "target";
    }
}

bool SnapshotManager::Dump(std::ostream& os) {
    // Don't actually lock. Dump() is for debugging purposes only, so it is okay
    // if it is racy.
    auto file = OpenLock(0 /* lock flag */);
    if (!file) return false;

    std::stringstream ss;

    ss << "Update state: " << ReadUpdateState(file.get()) << std::endl;

    ss << "Current slot: " << device_->GetSlotSuffix() << std::endl;
    ss << "Boot indicator: booting from " << GetCurrentSlot() << " slot" << std::endl;

    bool ok = true;
    std::vector<std::string> snapshots;
    if (!ListSnapshots(file.get(), &snapshots)) {
        LOG(ERROR) << "Could not list snapshots";
        snapshots.clear();
        ok = false;
    }
    for (const auto& name : snapshots) {
        ss << "Snapshot: " << name << std::endl;
        SnapshotStatus status;
        if (!ReadSnapshotStatus(file.get(), name, &status)) {
            ok = false;
            continue;
        }
        ss << "    state: " << SnapshotState_Name(status.state()) << std::endl;
        ss << "    device size (bytes): " << status.device_size() << std::endl;
        ss << "    snapshot size (bytes): " << status.snapshot_size() << std::endl;
        ss << "    cow partition size (bytes): " << status.cow_partition_size() << std::endl;
        ss << "    cow file size (bytes): " << status.cow_file_size() << std::endl;
        ss << "    allocated sectors: " << status.sectors_allocated() << std::endl;
        ss << "    metadata sectors: " << status.metadata_sectors() << std::endl;
    }
    os << ss.rdbuf();
    return ok;
}

std::unique_ptr<AutoDevice> SnapshotManager::EnsureMetadataMounted() {
    if (!device_->IsRecovery()) {
        // No need to mount anything in recovery.
        LOG(INFO) << "EnsureMetadataMounted does nothing in Android mode.";
        return std::unique_ptr<AutoUnmountDevice>(new AutoUnmountDevice());
    }
    return AutoUnmountDevice::New(device_->GetMetadataDir());
}

UpdateState SnapshotManager::InitiateMergeAndWait() {
    {
        auto lock = LockExclusive();
        // Sync update state from file with bootloader.
        if (!WriteUpdateState(lock.get(), ReadUpdateState(lock.get()))) {
            LOG(WARNING) << "Unable to sync write update state, fastboot may "
                         << "reject / accept wipes incorrectly!";
        }
    }

    unsigned int last_progress = 0;
    auto callback = [&]() -> void {
        double progress;
        GetUpdateState(&progress);
        if (last_progress < static_cast<unsigned int>(progress)) {
            last_progress = progress;
            LOG(INFO) << "Waiting for merge to complete: " << last_progress << "%.";
        }
    };

    LOG(INFO) << "Waiting for any previous merge request to complete. "
              << "This can take up to several minutes.";
    auto state = ProcessUpdateState(callback);
    if (state == UpdateState::None) {
        LOG(INFO) << "Can't find any snapshot to merge.";
        return state;
    }
    if (state == UpdateState::Unverified) {
        if (GetCurrentSlot() != Slot::Target) {
            LOG(INFO) << "Cannot merge until device reboots.";
            return state;
        }
        if (!InitiateMerge()) {
            LOG(ERROR) << "Failed to initiate merge.";
            return state;
        }
        // All other states can be handled by ProcessUpdateState.
        LOG(INFO) << "Waiting for merge to complete. This can take up to several minutes.";
        last_progress = 0;
        state = ProcessUpdateState(callback);
    }

    LOG(INFO) << "Merge finished with state \"" << state << "\".";
    return state;
}

Return SnapshotManager::WaitForMerge() {
    LOG(INFO) << "Waiting for any previous merge request to complete. "
              << "This can take up to several minutes.";
    while (true) {
        auto state = ProcessUpdateState();
        if (state == UpdateState::Unverified && GetCurrentSlot() == Slot::Target) {
            LOG(INFO) << "Wait for merge to be initiated.";
            std::this_thread::sleep_for(kUpdateStateCheckInterval);
            continue;
        }
        LOG(INFO) << "Wait for merge exits with state " << state;
        switch (state) {
            case UpdateState::None:
                [[fallthrough]];
            case UpdateState::MergeCompleted:
                [[fallthrough]];
            case UpdateState::Cancelled:
                return Return::Ok();
            case UpdateState::MergeNeedsReboot:
                return Return::NeedsReboot();
            default:
                return Return::Error();
        }
    }
}

bool SnapshotManager::HandleImminentDataWipe(const std::function<void()>& callback) {
    if (!device_->IsRecovery()) {
        LOG(ERROR) << "Data wipes are only allowed in recovery.";
        return false;
    }

    auto mount = EnsureMetadataMounted();
    if (!mount || !mount->HasDevice()) {
        // We allow the wipe to continue, because if we can't mount /metadata,
        // it is unlikely the device would have booted anyway. If there is no
        // metadata partition, then the device predates Virtual A/B.
        return true;
    }

    // Check this early, so we don't accidentally start trying to populate
    // the state file in recovery. Note we don't call GetUpdateState since
    // we want errors in acquiring the lock to be propagated, instead of
    // returning UpdateState::None.
    auto state_file = GetStateFilePath();
    if (access(state_file.c_str(), F_OK) != 0 && errno == ENOENT) {
        return true;
    }

    auto slot_number = SlotNumberForSlotSuffix(device_->GetSlotSuffix());
    auto super_path = device_->GetSuperDevice(slot_number);
    if (!CreateLogicalAndSnapshotPartitions(super_path)) {
        LOG(ERROR) << "Unable to map partitions to complete merge.";
        return false;
    }

    UpdateState state = ProcessUpdateState(callback);
    LOG(INFO) << "Update state in recovery: " << state;
    switch (state) {
        case UpdateState::MergeFailed:
            LOG(ERROR) << "Unrecoverable merge failure detected.";
            return false;
        case UpdateState::Unverified: {
            // If an OTA was just applied but has not yet started merging, we
            // have no choice but to revert slots, because the current slot will
            // immediately become unbootable. Rather than wait for the device
            // to reboot N times until a rollback, we proactively disable the
            // new slot instead.
            //
            // Since the rollback is inevitable, we don't treat a HAL failure
            // as an error here.
            auto slot = GetCurrentSlot();
            if (slot == Slot::Target) {
                LOG(ERROR) << "Reverting to old slot since update will be deleted.";
                device_->SetSlotAsUnbootable(slot_number);
            }
            break;
        }
        case UpdateState::MergeNeedsReboot:
            // We shouldn't get here, because nothing is depending on
            // logical partitions.
            LOG(ERROR) << "Unexpected merge-needs-reboot state in recovery.";
            break;
        default:
            break;
    }

    // Nothing should be depending on partitions now, so unmap them all.
    if (!UnmapAllPartitions()) {
        LOG(ERROR) << "Unable to unmap all partitions; fastboot may fail to flash.";
    }
    return true;
}

bool SnapshotManager::EnsureNoOverflowSnapshot(LockedFile* lock) {
    CHECK(lock);

    std::vector<std::string> snapshots;
    if (!ListSnapshots(lock, &snapshots)) {
        LOG(ERROR) << "Could not list snapshots.";
        return false;
    }

    auto& dm = DeviceMapper::Instance();
    for (const auto& snapshot : snapshots) {
        std::vector<DeviceMapper::TargetInfo> targets;
        if (!dm.GetTableStatus(snapshot, &targets)) {
            LOG(ERROR) << "Could not read snapshot device table: " << snapshot;
            return false;
        }
        if (targets.size() != 1) {
            LOG(ERROR) << "Unexpected device-mapper table for snapshot: " << snapshot
                       << ", size = " << targets.size();
            return false;
        }
        if (targets[0].IsOverflowSnapshot()) {
            LOG(ERROR) << "Detected overflow in snapshot " << snapshot
                       << ", CoW device size computation is wrong!";
            return false;
        }
    }

    return true;
}

CreateResult SnapshotManager::RecoveryCreateSnapshotDevices() {
    if (!device_->IsRecovery()) {
        LOG(ERROR) << __func__ << " is only allowed in recovery.";
        return CreateResult::NOT_CREATED;
    }

    auto mount = EnsureMetadataMounted();
    if (!mount || !mount->HasDevice()) {
        LOG(ERROR) << "Couldn't mount Metadata.";
        return CreateResult::NOT_CREATED;
    }

    auto state_file = GetStateFilePath();
    if (access(state_file.c_str(), F_OK) != 0 && errno == ENOENT) {
        LOG(ERROR) << "Couldn't access state file.";
        return CreateResult::NOT_CREATED;
    }

    if (!NeedSnapshotsInFirstStageMount()) {
        return CreateResult::NOT_CREATED;
    }

    auto slot_suffix = device_->GetOtherSlotSuffix();
    auto slot_number = SlotNumberForSlotSuffix(slot_suffix);
    auto super_path = device_->GetSuperDevice(slot_number);
    if (!CreateLogicalAndSnapshotPartitions(super_path)) {
        LOG(ERROR) << "Unable to map partitions.";
        return CreateResult::ERROR;
    }
    return CreateResult::CREATED;
}

}  // namespace snapshot
}  // namespace android