1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <malloc.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "Alloc.h"
#include "File.h"
#include "NativeInfo.h"
#include "Pointers.h"
#include "Thread.h"
#include "Threads.h"
constexpr size_t kDefaultMaxThreads = 512;
static size_t GetMaxAllocs(const AllocEntry* entries, size_t num_entries) {
size_t num_allocs = 0;
for (size_t i = 0; i < num_entries; i++) {
switch (entries[i].type) {
case THREAD_DONE:
break;
case MALLOC:
case CALLOC:
case MEMALIGN:
case REALLOC:
num_allocs++;
break;
case FREE:
num_allocs--;
break;
}
}
return num_allocs;
}
static void ProcessDump(const AllocEntry* entries, size_t num_entries, size_t max_threads) {
// Do a pass to get the maximum number of allocations used at one
// time to allow a single mmap that can hold the maximum number of
// pointers needed at once.
size_t max_allocs = GetMaxAllocs(entries, num_entries);
Pointers pointers(max_allocs);
Threads threads(&pointers, max_threads);
NativePrintf("Maximum threads available: %zu\n", threads.max_threads());
NativePrintf("Maximum allocations in dump: %zu\n", max_allocs);
NativePrintf("Total pointers available: %zu\n\n", pointers.max_pointers());
NativePrintInfo("Initial ");
for (size_t i = 0; i < num_entries; i++) {
if (((i + 1) % 100000) == 0) {
NativePrintf(" At line %zu:\n", i + 1);
NativePrintInfo(" ");
}
const AllocEntry& entry = entries[i];
Thread* thread = threads.FindThread(entry.tid);
if (thread == nullptr) {
thread = threads.CreateThread(entry.tid);
}
// Wait for the thread to complete any previous actions before handling
// the next action.
thread->WaitForReady();
thread->SetAllocEntry(&entry);
bool does_free = AllocDoesFree(entry);
if (does_free) {
// Make sure that any other threads doing allocations are complete
// before triggering the action. Otherwise, another thread could
// be creating the allocation we are going to free.
threads.WaitForAllToQuiesce();
}
// Tell the thread to execute the action.
thread->SetPending();
if (entries[i].type == THREAD_DONE) {
// Wait for the thread to finish and clear the thread entry.
threads.Finish(thread);
}
// Wait for this action to complete. This avoids a race where
// another thread could be creating the same allocation where are
// trying to free.
if (does_free) {
thread->WaitForReady();
}
}
// Wait for all threads to stop processing actions.
threads.WaitForAllToQuiesce();
NativePrintInfo("Final ");
// Free any outstanding pointers.
// This allows us to run a tool like valgrind to verify that no memory
// is leaked and everything is accounted for during a run.
threads.FinishAll();
pointers.FreeAll();
// Print out the total time making all allocation calls.
char buffer[256];
uint64_t total_nsecs = threads.total_time_nsecs();
NativeFormatFloat(buffer, sizeof(buffer), total_nsecs, 1000000000);
NativePrintf("Total Allocation/Free Time: %" PRIu64 "ns %ss\n", total_nsecs, buffer);
}
int main(int argc, char** argv) {
if (argc != 2 && argc != 3) {
if (argc > 3) {
fprintf(stderr, "Only two arguments are expected.\n");
} else {
fprintf(stderr, "Requires at least one argument.\n");
}
fprintf(stderr, "Usage: %s MEMORY_LOG_FILE [MAX_THREADS]\n", basename(argv[0]));
fprintf(stderr, " MEMORY_LOG_FILE\n");
fprintf(stderr, " This can either be a text file or a zipped text file.\n");
fprintf(stderr, " MAX_THREADs\n");
fprintf(stderr, " The maximum number of threads in the trace. The default is %zu.\n",
kDefaultMaxThreads);
fprintf(stderr, " This pre-allocates the memory for thread data to avoid allocating\n");
fprintf(stderr, " while the trace is being replayed.\n");
return 1;
}
#if defined(__LP64__)
NativePrintf("64 bit environment.\n");
#else
NativePrintf("32 bit environment.\n");
#endif
#if defined(__BIONIC__)
NativePrintf("Setting decay time to 1\n");
mallopt(M_DECAY_TIME, 1);
#endif
size_t max_threads = kDefaultMaxThreads;
if (argc == 3) {
max_threads = atoi(argv[2]);
}
AllocEntry* entries;
size_t num_entries;
GetUnwindInfo(argv[1], &entries, &num_entries);
NativePrintf("Processing: %s\n", argv[1]);
ProcessDump(entries, num_entries, max_threads);
FreeEntries(entries, num_entries);
return 0;
}
|