1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include <getopt.h>
#include <stdio.h>
#include <sysexits.h>
#include <sys/types.h>
#include <unistd.h>
#include <iostream>
#include <limits>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <android-base/file.h>
#include <android-base/parseint.h>
#include <liblp/liblp.h>
#include <sparse/sparse.h>
using namespace android::fs_mgr;
using android::base::unique_fd;
using SparsePtr = std::unique_ptr<sparse_file, decltype(&sparse_file_destroy)>;
class ImageExtractor final {
public:
ImageExtractor(unique_fd&& image_fd, std::unique_ptr<LpMetadata>&& metadata,
std::unordered_set<std::string>&& partitions, const std::string& output_dir);
bool Extract();
private:
bool BuildPartitionList();
bool ExtractPartition(const LpMetadataPartition* partition);
bool ExtractExtent(const LpMetadataExtent& extent, int output_fd);
unique_fd image_fd_;
std::unique_ptr<LpMetadata> metadata_;
std::unordered_set<std::string> partitions_;
std::string output_dir_;
std::unordered_map<std::string, const LpMetadataPartition*> partition_map_;
};
// Note that "sparse" here refers to filesystem sparse, not the Android sparse
// file format.
class SparseWriter final {
public:
SparseWriter(int output_fd, int image_fd, uint32_t block_size);
bool WriteExtent(const LpMetadataExtent& extent);
bool Finish();
private:
bool WriteBlock(const uint8_t* data);
int output_fd_;
int image_fd_;
uint32_t block_size_;
off_t hole_size_ = 0;
};
/* Prints program usage to |where|. */
static int usage(int /* argc */, char* argv[]) {
fprintf(stderr,
"%s - command-line tool for extracting partition images from super\n"
"\n"
"Usage:\n"
" %s [options...] SUPER_IMAGE [OUTPUT_DIR]\n"
"\n"
"Options:\n"
" -p, --partition=NAME Extract the named partition. This can\n"
" be specified multiple times.\n"
" -S, --slot=NUM Slot number (default is 0).\n",
argv[0], argv[0]);
return EX_USAGE;
}
int main(int argc, char* argv[]) {
// clang-format off
struct option options[] = {
{ "partition", required_argument, nullptr, 'p' },
{ "slot", required_argument, nullptr, 'S' },
{ nullptr, 0, nullptr, 0 },
};
// clang-format on
uint32_t slot_num = 0;
std::unordered_set<std::string> partitions;
int rv, index;
while ((rv = getopt_long_only(argc, argv, "+p:sh", options, &index)) != -1) {
switch (rv) {
case 'h':
usage(argc, argv);
return EX_OK;
case '?':
std::cerr << "Unrecognized argument.\n";
return usage(argc, argv);
case 'S':
if (!android::base::ParseUint(optarg, &slot_num)) {
std::cerr << "Slot must be a valid unsigned number.\n";
return usage(argc, argv);
}
break;
case 'p':
partitions.emplace(optarg);
break;
}
}
if (optind + 1 > argc) {
std::cerr << "Missing super image argument.\n";
return usage(argc, argv);
}
std::string super_path = argv[optind++];
std::string output_dir = ".";
if (optind + 1 <= argc) {
output_dir = argv[optind++];
}
if (optind < argc) {
std::cerr << "Unrecognized command-line arguments.\n";
return usage(argc, argv);
}
// Done reading arguments; open super.img. PartitionOpener will decorate
// relative paths with /dev/block/by-name, so get an absolute path here.
std::string abs_super_path;
if (!android::base::Realpath(super_path, &abs_super_path)) {
std::cerr << "realpath failed: " << super_path << ": " << strerror(errno) << "\n";
return EX_OSERR;
}
unique_fd fd(open(super_path.c_str(), O_RDONLY | O_CLOEXEC));
if (fd < 0) {
std::cerr << "open failed: " << abs_super_path << ": " << strerror(errno) << "\n";
return EX_OSERR;
}
auto metadata = ReadMetadata(abs_super_path, slot_num);
if (!metadata) {
SparsePtr ptr(sparse_file_import(fd, false, false), sparse_file_destroy);
if (ptr) {
std::cerr << "This image appears to be a sparse image. It must be "
"unsparsed to be"
<< " unpacked.\n";
return EX_USAGE;
}
std::cerr << "Image does not appear to be in super-partition format.\n";
return EX_USAGE;
}
ImageExtractor extractor(std::move(fd), std::move(metadata), std::move(partitions), output_dir);
if (!extractor.Extract()) {
return EX_SOFTWARE;
}
return EX_OK;
}
ImageExtractor::ImageExtractor(unique_fd&& image_fd, std::unique_ptr<LpMetadata>&& metadata,
std::unordered_set<std::string>&& partitions,
const std::string& output_dir)
: image_fd_(std::move(image_fd)),
metadata_(std::move(metadata)),
partitions_(std::move(partitions)),
output_dir_(output_dir) {}
bool ImageExtractor::Extract() {
if (!BuildPartitionList()) {
return false;
}
for (const auto& [name, info] : partition_map_) {
if (!ExtractPartition(info)) {
return false;
}
}
return true;
}
bool ImageExtractor::BuildPartitionList() {
bool extract_all = partitions_.empty();
for (const auto& partition : metadata_->partitions) {
auto name = GetPartitionName(partition);
if (extract_all || partitions_.count(name)) {
partition_map_[name] = &partition;
partitions_.erase(name);
}
}
if (!extract_all && !partitions_.empty()) {
std::cerr << "Could not find partition: " << *partitions_.begin() << "\n";
return false;
}
return true;
}
bool ImageExtractor::ExtractPartition(const LpMetadataPartition* partition) {
// Validate the extents and find the total image size.
uint64_t total_size = 0;
for (uint32_t i = 0; i < partition->num_extents; i++) {
uint32_t index = partition->first_extent_index + i;
const LpMetadataExtent& extent = metadata_->extents[index];
if (extent.target_type != LP_TARGET_TYPE_LINEAR) {
std::cerr << "Unsupported target type in extent: " << extent.target_type << "\n";
return false;
}
if (extent.target_source != 0) {
std::cerr << "Split super devices are not supported.\n";
return false;
}
total_size += extent.num_sectors * LP_SECTOR_SIZE;
}
// Make a temporary file so we can import it with sparse_file_read.
std::string output_path = output_dir_ + "/" + GetPartitionName(*partition) + ".img";
unique_fd output_fd(open(output_path.c_str(), O_RDWR | O_CLOEXEC | O_CREAT | O_TRUNC, 0644));
if (output_fd < 0) {
std::cerr << "open failed: " << output_path << ": " << strerror(errno) << "\n";
return false;
}
SparseWriter writer(output_fd, image_fd_, metadata_->geometry.logical_block_size);
// Extract each extent into output_fd.
for (uint32_t i = 0; i < partition->num_extents; i++) {
uint32_t index = partition->first_extent_index + i;
const LpMetadataExtent& extent = metadata_->extents[index];
if (!writer.WriteExtent(extent)) {
return false;
}
}
return writer.Finish();
}
SparseWriter::SparseWriter(int output_fd, int image_fd, uint32_t block_size)
: output_fd_(output_fd), image_fd_(image_fd), block_size_(block_size) {}
bool SparseWriter::WriteExtent(const LpMetadataExtent& extent) {
auto buffer = std::make_unique<uint8_t[]>(block_size_);
off_t super_offset = extent.target_data * LP_SECTOR_SIZE;
if (lseek(image_fd_, super_offset, SEEK_SET) < 0) {
std::cerr << "image lseek failed: " << strerror(errno) << "\n";
return false;
}
uint64_t remaining_bytes = extent.num_sectors * LP_SECTOR_SIZE;
while (remaining_bytes) {
if (remaining_bytes < block_size_) {
std::cerr << "extent is not block-aligned\n";
return false;
}
if (!android::base::ReadFully(image_fd_, buffer.get(), block_size_)) {
std::cerr << "read failed: " << strerror(errno) << "\n";
return false;
}
if (!WriteBlock(buffer.get())) {
return false;
}
remaining_bytes -= block_size_;
}
return true;
}
static bool ShouldSkipChunk(const uint8_t* data, size_t len) {
for (size_t i = 0; i < len; i++) {
if (data[i] != 0) {
return false;
}
}
return true;
}
bool SparseWriter::WriteBlock(const uint8_t* data) {
if (ShouldSkipChunk(data, block_size_)) {
hole_size_ += block_size_;
return true;
}
if (hole_size_) {
if (lseek(output_fd_, hole_size_, SEEK_CUR) < 0) {
std::cerr << "lseek failed: " << strerror(errno) << "\n";
return false;
}
hole_size_ = 0;
}
if (!android::base::WriteFully(output_fd_, data, block_size_)) {
std::cerr << "write failed: " << strerror(errno) << "\n";
return false;
}
return true;
}
bool SparseWriter::Finish() {
if (hole_size_) {
off_t offset = lseek(output_fd_, 0, SEEK_CUR);
if (offset < 0) {
std::cerr << "lseek failed: " << strerror(errno) << "\n";
return false;
}
if (ftruncate(output_fd_, offset + hole_size_) < 0) {
std::cerr << "ftruncate failed: " << strerror(errno) << "\n";
return false;
}
}
return true;
}
|