1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cast/streaming/receiver.h"
#include <algorithm>
#include <utility>
#include "absl/types/span.h"
#include "cast/streaming/constants.h"
#include "cast/streaming/receiver_packet_router.h"
#include "cast/streaming/session_config.h"
#include "util/chrono_helpers.h"
#include "util/osp_logging.h"
#include "util/std_util.h"
#include "util/trace_logging.h"
namespace openscreen {
namespace cast {
// Conveniences for ensuring logging output includes the SSRC of the Receiver,
// to help distinguish one out of multiple instances in a Cast Streaming
// session.
//
#define RECEIVER_LOG(level) OSP_LOG_##level << "[SSRC:" << ssrc() << "] "
Receiver::Receiver(Environment* environment,
ReceiverPacketRouter* packet_router,
SessionConfig config)
: now_(environment->now_function()),
packet_router_(packet_router),
config_(config),
rtcp_session_(config.sender_ssrc, config.receiver_ssrc, now_()),
rtcp_parser_(&rtcp_session_),
rtcp_builder_(&rtcp_session_),
stats_tracker_(config.rtp_timebase),
rtp_parser_(config.sender_ssrc),
rtp_timebase_(config.rtp_timebase),
crypto_(config.aes_secret_key, config.aes_iv_mask),
is_pli_enabled_(config.is_pli_enabled),
rtcp_buffer_capacity_(environment->GetMaxPacketSize()),
rtcp_buffer_(new uint8_t[rtcp_buffer_capacity_]),
rtcp_alarm_(environment->now_function(), environment->task_runner()),
smoothed_clock_offset_(ClockDriftSmoother::kDefaultTimeConstant),
consumption_alarm_(environment->now_function(),
environment->task_runner()) {
OSP_DCHECK(packet_router_);
OSP_DCHECK_EQ(checkpoint_frame(), FrameId::leader());
OSP_CHECK_GT(rtcp_buffer_capacity_, 0);
OSP_CHECK(rtcp_buffer_);
rtcp_builder_.SetPlayoutDelay(config.target_playout_delay);
playout_delay_changes_.emplace_back(FrameId::leader(),
config.target_playout_delay);
packet_router_->OnReceiverCreated(rtcp_session_.sender_ssrc(), this);
}
Receiver::~Receiver() {
packet_router_->OnReceiverDestroyed(rtcp_session_.sender_ssrc());
}
const SessionConfig& Receiver::config() const {
return config_;
}
int Receiver::rtp_timebase() const {
return rtp_timebase_;
}
Ssrc Receiver::ssrc() const {
return rtcp_session_.receiver_ssrc();
}
void Receiver::SetConsumer(Consumer* consumer) {
consumer_ = consumer;
ScheduleFrameReadyCheck();
}
void Receiver::SetPlayerProcessingTime(Clock::duration needed_time) {
player_processing_time_ = std::max(Clock::duration::zero(), needed_time);
}
void Receiver::RequestKeyFrame() {
// If we don't have picture loss indication enabled, we should not request
// any key frames.
OSP_DCHECK(is_pli_enabled_) << "PLI is not enabled.";
if (is_pli_enabled_ && !last_key_frame_received_.is_null() &&
last_frame_consumed_ >= last_key_frame_received_ &&
!rtcp_builder_.is_picture_loss_indicator_set()) {
rtcp_builder_.SetPictureLossIndicator(true);
SendRtcp();
}
}
int Receiver::AdvanceToNextFrame() {
TRACE_DEFAULT_SCOPED(TraceCategory::kReceiver);
const FrameId immediate_next_frame = last_frame_consumed_ + 1;
// Scan the queue for the next frame that should be consumed. Typically, this
// is the very next frame; but if it is incomplete and already late for
// playout, consider skipping-ahead.
for (FrameId f = immediate_next_frame; f <= latest_frame_expected_; ++f) {
PendingFrame& entry = GetQueueEntry(f);
if (entry.collector.is_complete()) {
const EncryptedFrame& encrypted_frame =
entry.collector.PeekAtAssembledFrame();
if (f == immediate_next_frame) { // Typical case.
return FrameCrypto::GetPlaintextSize(encrypted_frame);
}
if (encrypted_frame.dependency != EncodedFrame::DEPENDS_ON_ANOTHER) {
// Found a frame after skipping past some frames. Drop the ones being
// skipped, advancing |last_frame_consumed_| before returning.
DropAllFramesBefore(f);
return FrameCrypto::GetPlaintextSize(encrypted_frame);
}
// Conclusion: The frame in the current queue entry is complete, but
// depends on a prior incomplete frame. Continue scanning...
}
// Do not consider skipping past this frame if its estimated capture time is
// unknown. The implication here is that, if |estimated_capture_time| is
// set, the Receiver also knows whether any target playout delay changes
// were communicated from the Sender in the frame's first RTP packet.
if (!entry.estimated_capture_time) {
break;
}
// If this incomplete frame is not yet late for playout, simply wait for the
// rest of its packets to come in. However, do schedule a check to
// re-examine things at the time it would become a late frame, to possibly
// skip-over it.
const auto playout_time =
*entry.estimated_capture_time + ResolveTargetPlayoutDelay(f);
if (playout_time > (now_() + player_processing_time_)) {
ScheduleFrameReadyCheck(playout_time);
break;
}
}
return kNoFramesReady;
}
EncodedFrame Receiver::ConsumeNextFrame(absl::Span<uint8_t> buffer) {
TRACE_DEFAULT_SCOPED(TraceCategory::kReceiver);
// Assumption: The required call to AdvanceToNextFrame() ensures that
// |last_frame_consumed_| is set to one before the frame to be consumed here.
const FrameId frame_id = last_frame_consumed_ + 1;
OSP_CHECK_LE(frame_id, checkpoint_frame());
// Decrypt the frame, populating the given output |frame|.
PendingFrame& entry = GetQueueEntry(frame_id);
OSP_DCHECK(entry.collector.is_complete());
EncodedFrame frame;
frame.data = buffer;
crypto_.Decrypt(entry.collector.PeekAtAssembledFrame(), &frame);
OSP_DCHECK(entry.estimated_capture_time);
frame.reference_time =
*entry.estimated_capture_time + ResolveTargetPlayoutDelay(frame_id);
OSP_VLOG << "ConsumeNextFrame → " << frame.frame_id << ": "
<< frame.data.size() << " payload bytes, RTP Timestamp "
<< frame.rtp_timestamp.ToTimeSinceOrigin<microseconds>(rtp_timebase_)
.count()
<< " µs, to play-out "
<< to_microseconds(frame.reference_time - now_()).count()
<< " µs from now.";
entry.Reset();
last_frame_consumed_ = frame_id;
// Ensure the Consumer is notified if there are already more frames ready for
// consumption, and it hasn't explicitly called AdvanceToNextFrame() to check
// for itself.
ScheduleFrameReadyCheck();
return frame;
}
void Receiver::OnReceivedRtpPacket(Clock::time_point arrival_time,
std::vector<uint8_t> packet) {
const absl::optional<RtpPacketParser::ParseResult> part =
rtp_parser_.Parse(packet);
if (!part) {
RECEIVER_LOG(WARN) << "Parsing of " << packet.size()
<< " bytes as an RTP packet failed.";
return;
}
stats_tracker_.OnReceivedValidRtpPacket(part->sequence_number,
part->rtp_timestamp, arrival_time);
// Ignore packets for frames the Receiver is no longer interested in.
if (part->frame_id <= checkpoint_frame()) {
return;
}
// Extend the range of frames known to this Receiver, within the capacity of
// this Receiver's queue. Prepare the FrameCollectors to receive any
// newly-discovered frames.
if (part->frame_id > latest_frame_expected_) {
const FrameId max_allowed_frame_id =
last_frame_consumed_ + kMaxUnackedFrames;
if (part->frame_id > max_allowed_frame_id) {
return;
}
do {
++latest_frame_expected_;
GetQueueEntry(latest_frame_expected_)
.collector.set_frame_id(latest_frame_expected_);
} while (latest_frame_expected_ < part->frame_id);
}
// Start-up edge case: Blatantly drop the first packet of all frames until the
// Receiver has processed at least one Sender Report containing the necessary
// clock-drift and lip-sync information (see OnReceivedRtcpPacket()). This is
// an inescapable data dependency. Note that this special case should almost
// never trigger, since a well-behaving Sender will send the first Sender
// Report RTCP packet before any of the RTP packets.
if (!last_sender_report_ && part->packet_id == FramePacketId{0}) {
RECEIVER_LOG(WARN) << "Dropping packet 0 of frame " << part->frame_id
<< " because it arrived before the first Sender Report.";
// Note: The Sender will have to re-transmit this dropped packet after the
// Sender Report to allow the Receiver to move forward.
return;
}
PendingFrame& pending_frame = GetQueueEntry(part->frame_id);
FrameCollector& collector = pending_frame.collector;
if (collector.is_complete()) {
// An extra, redundant |packet| was received. Do nothing since the frame was
// already complete.
return;
}
if (!collector.CollectRtpPacket(*part, &packet)) {
return; // Bad data in the parsed packet. Ignore it.
}
// The first packet in a frame contains timing information critical for
// computing this frame's (and all future frames') playout time. Process that,
// but only once.
if (part->packet_id == FramePacketId{0} &&
!pending_frame.estimated_capture_time) {
// Estimate the original capture time of this frame (at the Sender), in
// terms of the Receiver's clock: First, start with a reference time point
// from the Sender's clock (the one from the last Sender Report). Then,
// translate it into the equivalent reference time point in terms of the
// Receiver's clock by applying the measured offset between the two clocks.
// Finally, apply the RTP timestamp difference between the Sender Report and
// this frame to determine what the original capture time of this frame was.
pending_frame.estimated_capture_time =
last_sender_report_->reference_time + smoothed_clock_offset_.Current() +
(part->rtp_timestamp - last_sender_report_->rtp_timestamp)
.ToDuration<Clock::duration>(rtp_timebase_);
// If a target playout delay change was included in this packet, record it.
if (part->new_playout_delay > milliseconds::zero()) {
RecordNewTargetPlayoutDelay(part->frame_id, part->new_playout_delay);
}
// Now that the estimated capture time is known, other frames may have just
// become ready, per the frame-skipping logic in AdvanceToNextFrame().
ScheduleFrameReadyCheck();
}
if (!collector.is_complete()) {
return; // Wait for the rest of the packets to come in.
}
const EncryptedFrame& encrypted_frame = collector.PeekAtAssembledFrame();
// Whenever a key frame has been received, the decoder has what it needs to
// recover. In this case, clear the PLI condition.
if (encrypted_frame.dependency == EncryptedFrame::KEY_FRAME) {
rtcp_builder_.SetPictureLossIndicator(false);
last_key_frame_received_ = part->frame_id;
}
// If this just-completed frame is the one right after the checkpoint frame,
// advance the checkpoint forward.
if (part->frame_id == (checkpoint_frame() + 1)) {
AdvanceCheckpoint(part->frame_id);
}
// Since a frame has become complete, schedule a check to see whether this or
// any other frames have become ready for consumption.
ScheduleFrameReadyCheck();
}
void Receiver::OnReceivedRtcpPacket(Clock::time_point arrival_time,
std::vector<uint8_t> packet) {
TRACE_DEFAULT_SCOPED(TraceCategory::kReceiver);
absl::optional<SenderReportParser::SenderReportWithId> parsed_report =
rtcp_parser_.Parse(packet);
if (!parsed_report) {
RECEIVER_LOG(WARN) << "Parsing of " << packet.size()
<< " bytes as an RTCP packet failed.";
return;
}
last_sender_report_ = std::move(parsed_report);
last_sender_report_arrival_time_ = arrival_time;
// Measure the offset between the Sender's clock and the Receiver's Clock.
// This will be used to translate reference timestamps from the Sender into
// timestamps that represent the exact same moment in time at the Receiver.
//
// Note: Due to design limitations in the Cast Streaming spec, the Receiver
// has no way to compute how long it took the Sender Report to travel over the
// network. The calculation here just ignores that, and so the
// |measured_offset| below will be larger than the true value by that amount.
// This will have the effect of a later-than-configured playout delay.
const Clock::duration measured_offset =
arrival_time - last_sender_report_->reference_time;
smoothed_clock_offset_.Update(arrival_time, measured_offset);
RtcpReportBlock report;
report.ssrc = rtcp_session_.sender_ssrc();
stats_tracker_.PopulateNextReport(&report);
report.last_status_report_id = last_sender_report_->report_id;
report.SetDelaySinceLastReport(now_() - last_sender_report_arrival_time_);
rtcp_builder_.IncludeReceiverReportInNextPacket(report);
SendRtcp();
}
void Receiver::SendRtcp() {
// Collect ACK/NACK feedback for all active frames in the queue.
std::vector<PacketNack> packet_nacks;
std::vector<FrameId> frame_acks;
for (FrameId f = checkpoint_frame() + 1; f <= latest_frame_expected_; ++f) {
const FrameCollector& collector = GetQueueEntry(f).collector;
if (collector.is_complete()) {
frame_acks.push_back(f);
} else {
collector.GetMissingPackets(&packet_nacks);
}
}
// Build and send a compound RTCP packet.
const bool no_nacks = packet_nacks.empty();
rtcp_builder_.IncludeFeedbackInNextPacket(std::move(packet_nacks),
std::move(frame_acks));
last_rtcp_send_time_ = now_();
packet_router_->SendRtcpPacket(rtcp_builder_.BuildPacket(
last_rtcp_send_time_,
absl::Span<uint8_t>(rtcp_buffer_.get(), rtcp_buffer_capacity_)));
// Schedule the automatic sending of another RTCP packet, if this method is
// not called within some bounded amount of time. While incomplete frames
// exist in the queue, send RTCP packets (with ACK/NACK feedback) frequently.
// When there are no incomplete frames, use a longer "keepalive" interval.
const Clock::duration interval =
(no_nacks ? kRtcpReportInterval : kNackFeedbackInterval);
rtcp_alarm_.Schedule([this] { SendRtcp(); }, last_rtcp_send_time_ + interval);
}
const Receiver::PendingFrame& Receiver::GetQueueEntry(FrameId frame_id) const {
return const_cast<Receiver*>(this)->GetQueueEntry(frame_id);
}
Receiver::PendingFrame& Receiver::GetQueueEntry(FrameId frame_id) {
return pending_frames_[(frame_id - FrameId::first()) %
pending_frames_.size()];
}
void Receiver::RecordNewTargetPlayoutDelay(FrameId as_of_frame,
milliseconds delay) {
OSP_DCHECK_GT(as_of_frame, checkpoint_frame());
// Prune-out entries from |playout_delay_changes_| that are no longer needed.
// At least one entry must always be kept (i.e., there must always be a
// "current" setting).
const FrameId next_frame = last_frame_consumed_ + 1;
const auto keep_one_before_it = std::find_if(
std::next(playout_delay_changes_.begin()), playout_delay_changes_.end(),
[&](const auto& entry) { return entry.first > next_frame; });
playout_delay_changes_.erase(playout_delay_changes_.begin(),
std::prev(keep_one_before_it));
// Insert the delay change entry, maintaining the ascending ordering of the
// vector.
const auto insert_it = std::find_if(
playout_delay_changes_.begin(), playout_delay_changes_.end(),
[&](const auto& entry) { return entry.first > as_of_frame; });
playout_delay_changes_.emplace(insert_it, as_of_frame, delay);
OSP_DCHECK(AreElementsSortedAndUnique(playout_delay_changes_));
}
milliseconds Receiver::ResolveTargetPlayoutDelay(FrameId frame_id) const {
OSP_DCHECK_GT(frame_id, last_frame_consumed_);
#if OSP_DCHECK_IS_ON()
// Extra precaution: Ensure all possible playout delay changes are known. In
// other words, every unconsumed frame in the queue, up to (and including)
// |frame_id|, must have an assigned estimated_capture_time.
for (FrameId f = last_frame_consumed_ + 1; f <= frame_id; ++f) {
OSP_DCHECK(GetQueueEntry(f).estimated_capture_time)
<< " don't know whether there was a playout delay change for frame "
<< f;
}
#endif
const auto it = std::find_if(
playout_delay_changes_.crbegin(), playout_delay_changes_.crend(),
[&](const auto& entry) { return entry.first <= frame_id; });
OSP_DCHECK(it != playout_delay_changes_.crend());
return it->second;
}
void Receiver::AdvanceCheckpoint(FrameId new_checkpoint) {
TRACE_DEFAULT_SCOPED(TraceCategory::kReceiver);
OSP_DCHECK_GT(new_checkpoint, checkpoint_frame());
OSP_DCHECK_LE(new_checkpoint, latest_frame_expected_);
while (new_checkpoint < latest_frame_expected_) {
const FrameId next = new_checkpoint + 1;
if (!GetQueueEntry(next).collector.is_complete()) {
break;
}
new_checkpoint = next;
}
set_checkpoint_frame(new_checkpoint);
rtcp_builder_.SetPlayoutDelay(ResolveTargetPlayoutDelay(new_checkpoint));
SendRtcp();
}
void Receiver::DropAllFramesBefore(FrameId first_kept_frame) {
// The following DCHECKs are verifying that this method is only being called
// because one or more incomplete frames are being skipped-over.
const FrameId first_to_drop = last_frame_consumed_ + 1;
OSP_DCHECK_GT(first_kept_frame, first_to_drop);
OSP_DCHECK_GT(first_kept_frame, checkpoint_frame());
OSP_DCHECK_LE(first_kept_frame, latest_frame_expected_);
// Reset each of the frames being dropped, pretending that they were consumed.
for (FrameId f = first_to_drop; f < first_kept_frame; ++f) {
PendingFrame& entry = GetQueueEntry(f);
// Pedantic sanity-check: Ensure the "target playout delay change" data
// dependency was satisfied. See comments in AdvanceToNextFrame().
OSP_DCHECK(entry.estimated_capture_time);
entry.Reset();
}
last_frame_consumed_ = first_kept_frame - 1;
RECEIVER_LOG(INFO) << "Artificially advancing checkpoint after skipping.";
AdvanceCheckpoint(first_kept_frame);
}
void Receiver::ScheduleFrameReadyCheck(Clock::time_point when) {
consumption_alarm_.Schedule(
[this] {
if (consumer_) {
const int next_frame_buffer_size = AdvanceToNextFrame();
if (next_frame_buffer_size != kNoFramesReady) {
consumer_->OnFramesReady(next_frame_buffer_size);
}
}
},
when);
}
Receiver::PendingFrame::PendingFrame() = default;
Receiver::PendingFrame::~PendingFrame() = default;
void Receiver::PendingFrame::Reset() {
collector.Reset();
estimated_capture_time = absl::nullopt;
}
// static
constexpr milliseconds Receiver::kDefaultPlayerProcessingTime;
constexpr int Receiver::kNoFramesReady;
constexpr milliseconds Receiver::kNackFeedbackInterval;
} // namespace cast
} // namespace openscreen
|