1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
// Copyright 2020 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cast/streaming/sender.h"
#include <algorithm>
#include <chrono>
#include <ratio>
#include "cast/streaming/session_config.h"
#include "util/chrono_helpers.h"
#include "util/osp_logging.h"
#include "util/std_util.h"
#include "util/trace_logging.h"
namespace openscreen {
namespace cast {
using openscreen::operator<<; // For std::chrono::duration logging.
Sender::Sender(Environment* environment,
SenderPacketRouter* packet_router,
SessionConfig config,
RtpPayloadType rtp_payload_type)
: config_(config),
packet_router_(packet_router),
rtcp_session_(config.sender_ssrc,
config.receiver_ssrc,
environment->now()),
rtcp_parser_(&rtcp_session_, this),
sender_report_builder_(&rtcp_session_),
rtp_packetizer_(rtp_payload_type,
config.sender_ssrc,
packet_router_->max_packet_size()),
rtp_timebase_(config.rtp_timebase),
crypto_(config.aes_secret_key, config.aes_iv_mask),
target_playout_delay_(config.target_playout_delay) {
OSP_DCHECK(packet_router_);
OSP_DCHECK_NE(rtcp_session_.sender_ssrc(), rtcp_session_.receiver_ssrc());
OSP_DCHECK_GT(rtp_timebase_, 0);
OSP_DCHECK(target_playout_delay_ > milliseconds::zero());
pending_sender_report_.reference_time = SenderPacketRouter::kNever;
packet_router_->OnSenderCreated(rtcp_session_.receiver_ssrc(), this);
}
Sender::~Sender() {
packet_router_->OnSenderDestroyed(rtcp_session_.receiver_ssrc());
}
void Sender::SetObserver(Sender::Observer* observer) {
observer_ = observer;
}
int Sender::GetInFlightFrameCount() const {
return num_frames_in_flight_;
}
Clock::duration Sender::GetInFlightMediaDuration(
RtpTimeTicks next_frame_rtp_timestamp) const {
if (num_frames_in_flight_ == 0) {
return Clock::duration::zero(); // No frames are currently in-flight.
}
const PendingFrameSlot& oldest_slot = *get_slot_for(checkpoint_frame_id_ + 1);
// Note: The oldest slot's frame cannot have been canceled because the
// protocol does not allow ACK'ing this particular frame without also moving
// the checkpoint forward. See "CST2 feedback" discussion in rtp_defines.h.
OSP_DCHECK(oldest_slot.is_active_for_frame(checkpoint_frame_id_ + 1));
return (next_frame_rtp_timestamp - oldest_slot.frame->rtp_timestamp)
.ToDuration<Clock::duration>(rtp_timebase_);
}
Clock::duration Sender::GetMaxInFlightMediaDuration() const {
// Assumption: The total amount of allowed in-flight media should equal the
// half of the playout delay window, plus the amount of time it takes to
// receive an ACK from the Receiver.
//
// Why half of the playout delay window? It's assumed here that capture and
// media encoding, which occur before EnqueueFrame() is called, are executing
// within the first half of the playout delay window. This leaves the second
// half for executing all network transmits/re-transmits, plus decoding and
// play-out at the Receiver.
return (target_playout_delay_ / 2) + (round_trip_time_ / 2);
}
bool Sender::NeedsKeyFrame() const {
return last_enqueued_key_frame_id_ <= picture_lost_at_frame_id_;
}
FrameId Sender::GetNextFrameId() const {
return last_enqueued_frame_id_ + 1;
}
Sender::EnqueueFrameResult Sender::EnqueueFrame(const EncodedFrame& frame) {
// Assume the fields of the |frame| have all been set correctly, with
// monotonically increasing timestamps and a valid pointer to the data.
OSP_DCHECK_EQ(frame.frame_id, GetNextFrameId());
OSP_DCHECK_GE(frame.referenced_frame_id, FrameId::first());
if (frame.frame_id != FrameId::first()) {
OSP_DCHECK_GT(frame.rtp_timestamp, pending_sender_report_.rtp_timestamp);
OSP_DCHECK_GT(frame.reference_time, pending_sender_report_.reference_time);
}
OSP_DCHECK(frame.data.data());
// Check whether enqueuing the frame would exceed the design limit for the
// span of FrameIds. Even if |num_frames_in_flight_| is less than
// kMaxUnackedFrames, it's the span of FrameIds that is restricted.
if ((frame.frame_id - checkpoint_frame_id_) > kMaxUnackedFrames) {
return REACHED_ID_SPAN_LIMIT;
}
// Check whether enqueuing the frame would exceed the current maximum media
// duration limit.
if (GetInFlightMediaDuration(frame.rtp_timestamp) >
GetMaxInFlightMediaDuration()) {
return MAX_DURATION_IN_FLIGHT;
}
// Encrypt the frame and initialize the slot tracking its sending.
PendingFrameSlot* const slot = get_slot_for(frame.frame_id);
OSP_DCHECK(!slot->frame);
slot->frame = crypto_.Encrypt(frame);
const int packet_count = rtp_packetizer_.ComputeNumberOfPackets(*slot->frame);
if (packet_count <= 0) {
slot->frame.reset();
return PAYLOAD_TOO_LARGE;
}
slot->send_flags.Resize(packet_count, YetAnotherBitVector::SET);
slot->packet_sent_times.assign(packet_count, SenderPacketRouter::kNever);
// Officially record the "enqueue."
++num_frames_in_flight_;
last_enqueued_frame_id_ = slot->frame->frame_id;
OSP_DCHECK_LE(num_frames_in_flight_,
last_enqueued_frame_id_ - checkpoint_frame_id_);
if (slot->frame->dependency == EncodedFrame::KEY_FRAME) {
last_enqueued_key_frame_id_ = slot->frame->frame_id;
}
// Update the target playout delay, if necessary.
if (slot->frame->new_playout_delay > milliseconds::zero()) {
target_playout_delay_ = slot->frame->new_playout_delay;
playout_delay_change_at_frame_id_ = slot->frame->frame_id;
}
// Update the lip-sync information for the next Sender Report.
pending_sender_report_.reference_time = slot->frame->reference_time;
pending_sender_report_.rtp_timestamp = slot->frame->rtp_timestamp;
// If the round trip time hasn't been computed yet, immediately send a RTCP
// packet (i.e., before the RTP packets are sent). The RTCP packet will
// provide a Sender Report which contains the required lip-sync information
// the Receiver needs for timing the media playout.
//
// Detail: Working backwards, if the round trip time is not known, then this
// Sender has never processed a Receiver Report. Thus, the Receiver has never
// provided a Receiver Report, which it can only do after having processed a
// Sender Report from this Sender. Thus, this Sender really needs to send
// that, right now!
if (round_trip_time_ == Clock::duration::zero()) {
packet_router_->RequestRtcpSend(rtcp_session_.receiver_ssrc());
}
// Re-activate RTP sending if it was suspended.
packet_router_->RequestRtpSend(rtcp_session_.receiver_ssrc());
return OK;
}
void Sender::CancelInFlightData() {
while (checkpoint_frame_id_ <= last_enqueued_frame_id_) {
++checkpoint_frame_id_;
CancelPendingFrame(checkpoint_frame_id_);
}
}
void Sender::OnReceivedRtcpPacket(Clock::time_point arrival_time,
absl::Span<const uint8_t> packet) {
rtcp_packet_arrival_time_ = arrival_time;
// This call to Parse() invoke zero or more of the OnReceiverXYZ() methods in
// the current call stack:
if (rtcp_parser_.Parse(packet, last_enqueued_frame_id_)) {
packet_router_->OnRtcpReceived(arrival_time, round_trip_time_);
}
}
absl::Span<uint8_t> Sender::GetRtcpPacketForImmediateSend(
Clock::time_point send_time,
absl::Span<uint8_t> buffer) {
if (pending_sender_report_.reference_time == SenderPacketRouter::kNever) {
// Cannot send a report if one is not available (i.e., a frame has never
// been enqueued).
return buffer.subspan(0, 0);
}
// The Sender Report to be sent is a snapshot of the "pending Sender Report,"
// but with its timestamp fields modified. First, the reference time is set to
// the RTCP packet's send time. Then, the corresponding RTP timestamp is
// translated to match (for lip-sync).
RtcpSenderReport sender_report = pending_sender_report_;
sender_report.reference_time = send_time;
sender_report.rtp_timestamp += RtpTimeDelta::FromDuration(
sender_report.reference_time - pending_sender_report_.reference_time,
rtp_timebase_);
return sender_report_builder_.BuildPacket(sender_report, buffer).first;
}
absl::Span<uint8_t> Sender::GetRtpPacketForImmediateSend(
Clock::time_point send_time,
absl::Span<uint8_t> buffer) {
ChosenPacket chosen = ChooseNextRtpPacketNeedingSend();
// If no packets need sending (i.e., all packets have been sent at least once
// and do not need to be re-sent yet), check whether a Kickstart packet should
// be sent. It's possible that there has been complete packet loss of some
// frames, and the Receiver may not be aware of the existence of the latest
// frame(s). Kickstarting is the only way the Receiver can discover the newer
// frames it doesn't know about.
if (!chosen) {
const ChosenPacketAndWhen kickstart = ChooseKickstartPacket();
if (kickstart.when > send_time) {
// Nothing to send, so return "empty" signal to the packet router. The
// packet router will suspend RTP sending until this Sender explicitly
// resumes it.
return buffer.subspan(0, 0);
}
chosen = kickstart;
OSP_DCHECK(chosen);
}
const absl::Span<uint8_t> result = rtp_packetizer_.GeneratePacket(
*chosen.slot->frame, chosen.packet_id, buffer);
chosen.slot->send_flags.Clear(chosen.packet_id);
chosen.slot->packet_sent_times[chosen.packet_id] = send_time;
++pending_sender_report_.send_packet_count;
// According to RFC3550, the octet count does not include the RTP header. The
// following is just a good approximation, however, because the header size
// will very infrequently be 4 bytes greater (see
// RtpPacketizer::kAdaptiveLatencyHeaderSize). No known Cast Streaming
// Receiver implementations use this for anything, and so this should be fine.
const int approximate_octet_count =
static_cast<int>(result.size()) - RtpPacketizer::kBaseRtpHeaderSize;
OSP_DCHECK_GE(approximate_octet_count, 0);
pending_sender_report_.send_octet_count += approximate_octet_count;
return result;
}
Clock::time_point Sender::GetRtpResumeTime() {
if (ChooseNextRtpPacketNeedingSend()) {
return Alarm::kImmediately;
}
return ChooseKickstartPacket().when;
}
void Sender::OnReceiverReferenceTimeAdvanced(Clock::time_point reference_time) {
// Not used.
}
void Sender::OnReceiverReport(const RtcpReportBlock& receiver_report) {
OSP_DCHECK_NE(rtcp_packet_arrival_time_, SenderPacketRouter::kNever);
const Clock::duration total_delay =
rtcp_packet_arrival_time_ -
sender_report_builder_.GetRecentReportTime(
receiver_report.last_status_report_id, rtcp_packet_arrival_time_);
const auto non_network_delay =
Clock::to_duration(receiver_report.delay_since_last_report);
// Round trip time measurement: This is the time elapsed since the Sender
// Report was sent, minus the time the Receiver did other stuff before sending
// the Receiver Report back.
//
// If the round trip time seems to be less than or equal to zero, assume clock
// imprecision by one or both peers caused a bad value to be calculated. The
// true value is likely very close to zero (i.e., this is ideal network
// behavior); and so just represent this as 75 µs, an optimistic
// wired-Ethernet LAN ping time.
constexpr auto kNearZeroRoundTripTime = Clock::to_duration(microseconds(75));
static_assert(kNearZeroRoundTripTime > Clock::duration::zero(),
"More precision in Clock::duration needed!");
const Clock::duration measurement =
std::max(total_delay - non_network_delay, kNearZeroRoundTripTime);
// Validate the measurement by using the current target playout delay as a
// "reasonable upper-bound." It's certainly possible that the actual network
// round-trip time could exceed the target playout delay, but that would mean
// the current network performance is totally inadequate for streaming anyway.
if (measurement > target_playout_delay_) {
OSP_LOG_WARN << "Invalidating a round-trip time measurement ("
<< measurement
<< ") since it exceeds the current target playout delay ("
<< target_playout_delay_ << ").";
return;
}
// Measurements will typically have high variance. Use a simple smoothing
// filter to track a short-term average that changes less drastically.
if (round_trip_time_ == Clock::duration::zero()) {
round_trip_time_ = measurement;
} else {
// Arbitrary constant, to provide 1/8 weight to the new measurement, and 7/8
// weight to the old estimate, which seems to work well for de-noising the
// estimate.
constexpr int kInertia = 7;
round_trip_time_ =
(kInertia * round_trip_time_ + measurement) / (kInertia + 1);
}
TRACE_SCOPED(TraceCategory::kSender, "UpdatedRTT");
}
void Sender::OnReceiverIndicatesPictureLoss() {
TRACE_DEFAULT_SCOPED(TraceCategory::kSender);
// The Receiver will continue the PLI notifications until it has received a
// key frame. Thus, if a key frame is already in-flight, don't make a state
// change that would cause this Sender to force another expensive key frame.
if (checkpoint_frame_id_ < last_enqueued_key_frame_id_) {
return;
}
picture_lost_at_frame_id_ = checkpoint_frame_id_;
if (observer_) {
observer_->OnPictureLost();
}
// Note: It may seem that all pending frames should be canceled until
// EnqueueFrame() is called with a key frame. However:
//
// 1. The Receiver should still be the main authority on what frames/packets
// are being ACK'ed and NACK'ed.
//
// 2. It may be desirable for the Receiver to be "limping along" in the
// meantime. For example, video may be corrupted but mostly watchable,
// and so it's best for the Sender to continue sending the non-key frames
// until the Receiver indicates otherwise.
}
void Sender::OnReceiverCheckpoint(FrameId frame_id,
milliseconds playout_delay) {
TRACE_DEFAULT_SCOPED(TraceCategory::kSender);
if (frame_id > last_enqueued_frame_id_) {
OSP_LOG_ERROR
<< "Ignoring checkpoint for " << latest_expected_frame_id_
<< " because this Sender could not have sent any frames after "
<< last_enqueued_frame_id_ << '.';
return;
}
// CompoundRtcpParser should guarantee this:
OSP_DCHECK(playout_delay >= milliseconds::zero());
while (checkpoint_frame_id_ < frame_id) {
++checkpoint_frame_id_;
CancelPendingFrame(checkpoint_frame_id_);
}
latest_expected_frame_id_ = std::max(latest_expected_frame_id_, frame_id);
if (playout_delay != target_playout_delay_ &&
frame_id >= playout_delay_change_at_frame_id_) {
OSP_LOG_WARN << "Sender's target playout delay (" << target_playout_delay_
<< ") disagrees with the Receiver's (" << playout_delay << ")";
}
}
void Sender::OnReceiverHasFrames(std::vector<FrameId> acks) {
OSP_DCHECK(!acks.empty() && AreElementsSortedAndUnique(acks));
if (acks.back() > last_enqueued_frame_id_) {
OSP_LOG_ERROR << "Ignoring individual frame ACKs: ACKing frame "
<< latest_expected_frame_id_
<< " is invalid because this Sender could not have sent any "
"frames after "
<< last_enqueued_frame_id_ << '.';
return;
}
for (FrameId id : acks) {
CancelPendingFrame(id);
}
latest_expected_frame_id_ = std::max(latest_expected_frame_id_, acks.back());
}
void Sender::OnReceiverIsMissingPackets(std::vector<PacketNack> nacks) {
OSP_DCHECK(!nacks.empty() && AreElementsSortedAndUnique(nacks));
OSP_DCHECK_NE(rtcp_packet_arrival_time_, SenderPacketRouter::kNever);
// This is a point-in-time threshold that indicates whether each NACK will
// trigger a packet retransmit. The threshold is based on the network round
// trip time because a Receiver's NACK may have been issued while the needed
// packet was in-flight from the Sender. In such cases, the Receiver's NACK is
// likely stale and this Sender should not redundantly re-transmit the packet
// again.
const Clock::time_point too_recent_a_send_time =
rtcp_packet_arrival_time_ - round_trip_time_;
// Iterate over all the NACKs...
bool need_to_send = false;
for (auto nack_it = nacks.begin(); nack_it != nacks.end();) {
// Find the slot associated with the NACK's frame ID.
const FrameId frame_id = nack_it->frame_id;
PendingFrameSlot* slot = nullptr;
if (frame_id <= last_enqueued_frame_id_) {
PendingFrameSlot* const candidate_slot = get_slot_for(frame_id);
if (candidate_slot->is_active_for_frame(frame_id)) {
slot = candidate_slot;
}
}
// If no slot was found (i.e., the NACK is invalid) for the frame, skip-over
// all other NACKs for the same frame. While it seems to be a bug that the
// Receiver would attempt to NACK a frame that does not yet exist, this can
// happen in rare cases where RTCP packets arrive out-of-order (i.e., the
// network shuffled them).
if (!slot) {
TRACE_SCOPED(TraceCategory::kSender, "MissingNackSlot");
for (++nack_it; nack_it != nacks.end() && nack_it->frame_id == frame_id;
++nack_it) {
}
continue;
}
latest_expected_frame_id_ = std::max(latest_expected_frame_id_, frame_id);
const auto HandleIndividualNack = [&](FramePacketId packet_id) {
if (slot->packet_sent_times[packet_id] <= too_recent_a_send_time) {
slot->send_flags.Set(packet_id);
need_to_send = true;
}
};
const FramePacketId range_end = slot->packet_sent_times.size();
if (nack_it->packet_id == kAllPacketsLost) {
for (FramePacketId packet_id = 0; packet_id < range_end; ++packet_id) {
HandleIndividualNack(packet_id);
}
++nack_it;
} else {
do {
if (nack_it->packet_id < range_end) {
HandleIndividualNack(nack_it->packet_id);
} else {
OSP_LOG_WARN
<< "Ignoring NACK for packet that doesn't exist in frame "
<< frame_id << ": " << static_cast<int>(nack_it->packet_id);
}
++nack_it;
} while (nack_it != nacks.end() && nack_it->frame_id == frame_id);
}
}
if (need_to_send) {
packet_router_->RequestRtpSend(rtcp_session_.receiver_ssrc());
}
}
Sender::ChosenPacket Sender::ChooseNextRtpPacketNeedingSend() {
// Find the oldest packet needing to be sent (or re-sent).
for (FrameId frame_id = checkpoint_frame_id_ + 1;
frame_id <= last_enqueued_frame_id_; ++frame_id) {
PendingFrameSlot* const slot = get_slot_for(frame_id);
if (!slot->is_active_for_frame(frame_id)) {
continue; // Frame was canceled. None of its packets need to be sent.
}
const FramePacketId packet_id = slot->send_flags.FindFirstSet();
if (packet_id < slot->send_flags.size()) {
return {slot, packet_id};
}
}
return {}; // Nothing needs to be sent.
}
Sender::ChosenPacketAndWhen Sender::ChooseKickstartPacket() {
if (latest_expected_frame_id_ >= last_enqueued_frame_id_) {
// Since the Receiver must know about all of the frames currently queued, no
// Kickstart packet is necessary.
return {};
}
// The Kickstart packet is always in the last-enqueued frame, so that the
// Receiver will know about every frame the Sender has. However, which packet
// should be chosen? Any would do, since all packets contain the frame's total
// packet count. For historical reasons, all sender implementations have
// always just sent the last packet; and so that tradition is continued here.
ChosenPacketAndWhen chosen;
chosen.slot = get_slot_for(last_enqueued_frame_id_);
// Note: This frame cannot have been canceled since
// |latest_expected_frame_id_| hasn't yet reached this point.
OSP_DCHECK(chosen.slot->is_active_for_frame(last_enqueued_frame_id_));
chosen.packet_id = chosen.slot->send_flags.size() - 1;
const Clock::time_point time_last_sent =
chosen.slot->packet_sent_times[chosen.packet_id];
// Sanity-check: This method should not be called to choose a packet while
// there are still unsent packets.
OSP_DCHECK_NE(time_last_sent, SenderPacketRouter::kNever);
// The desired Kickstart interval is a fraction of the total
// |target_playout_delay_|. The reason for the specific ratio here is based on
// lost knowledge (from legacy implementations); but it makes sense (i.e., to
// be a good "network citizen") to be less aggressive for larger playout delay
// windows, and more aggressive for shorter ones to avoid too-late packet
// arrivals.
using kWaitFraction = std::ratio<1, 20>;
const Clock::duration desired_kickstart_interval =
Clock::to_duration(target_playout_delay_) * kWaitFraction::num /
kWaitFraction::den;
// The actual interval used is increased, if current network performance
// warrants waiting longer. Don't send a Kickstart packet until no NACKs
// have been received for two network round-trip periods.
constexpr int kLowerBoundRoundTrips = 2;
const Clock::duration kickstart_interval = std::max(
desired_kickstart_interval, round_trip_time_ * kLowerBoundRoundTrips);
chosen.when = time_last_sent + kickstart_interval;
return chosen;
}
void Sender::CancelPendingFrame(FrameId frame_id) {
PendingFrameSlot* const slot = get_slot_for(frame_id);
if (!slot->is_active_for_frame(frame_id)) {
return; // Frame was already canceled.
}
packet_router_->OnPayloadReceived(
slot->frame->data.size(), rtcp_packet_arrival_time_, round_trip_time_);
slot->frame.reset();
OSP_DCHECK_GT(num_frames_in_flight_, 0);
--num_frames_in_flight_;
if (observer_) {
observer_->OnFrameCanceled(frame_id);
}
}
void Sender::Observer::OnFrameCanceled(FrameId frame_id) {}
void Sender::Observer::OnPictureLost() {}
Sender::Observer::~Observer() = default;
Sender::PendingFrameSlot::PendingFrameSlot() = default;
Sender::PendingFrameSlot::~PendingFrameSlot() = default;
} // namespace cast
} // namespace openscreen
|