1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "util/crypto/certificate_utils.h"
#include <openssl/asn1.h>
#include <openssl/bio.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/evp.h>
#include <openssl/rsa.h>
#include <openssl/ssl.h>
#include <openssl/x509v3.h>
#include <time.h>
#include <string>
#include "util/crypto/openssl_util.h"
#include "util/crypto/sha2.h"
#include "util/osp_logging.h"
namespace openscreen {
namespace {
// These values are bit positions from RFC 5280 4.2.1.3 and will be passed to
// ASN1_BIT_STRING_set_bit.
enum KeyUsageBits {
kDigitalSignature = 0,
kKeyCertSign = 5,
};
// Returns whether or not the certificate field successfully was added.
bool AddCertificateField(X509_NAME* certificate_name,
absl::string_view field,
absl::string_view value) {
return X509_NAME_add_entry_by_txt(
certificate_name, std::string(field).c_str(), MBSTRING_ASC,
reinterpret_cast<const unsigned char*>(value.data()),
value.length(), -1, 0) == 1;
}
bssl::UniquePtr<ASN1_TIME> ToAsn1Time(std::chrono::seconds time_since_epoch) {
return bssl::UniquePtr<ASN1_TIME>(
ASN1_TIME_set(nullptr, time_since_epoch.count()));
}
bssl::UniquePtr<X509> CreateCertificateInternal(
absl::string_view name,
std::chrono::seconds certificate_duration,
EVP_PKEY key_pair,
std::chrono::seconds time_since_unix_epoch,
bool make_ca,
X509* issuer,
EVP_PKEY* issuer_key) {
OSP_DCHECK((!!issuer) == (!!issuer_key));
bssl::UniquePtr<X509> certificate(X509_new());
if (!issuer) {
issuer = certificate.get();
}
if (!issuer_key) {
issuer_key = &key_pair;
}
// Certificate versions are zero indexed, so V1 = 0.
const int kCertificateVersion3 = 2;
if (X509_set_version(certificate.get(), kCertificateVersion3) != 1) {
OSP_DVLOG << "Failed to set certificate version";
return nullptr;
}
// Serial numbers must be unique for this session. As a pretend CA, we should
// not issue certificates with the same serial number in the same session.
static int serial_number(1);
if (ASN1_INTEGER_set(X509_get_serialNumber(certificate.get()),
serial_number++) != 1) {
OSP_DVLOG << "Failed to set serial number.";
return nullptr;
}
const bssl::UniquePtr<ASN1_TIME> now(ToAsn1Time(time_since_unix_epoch));
const bssl::UniquePtr<ASN1_TIME> expiration_time(
ToAsn1Time(time_since_unix_epoch + certificate_duration));
if ((X509_set_notBefore(certificate.get(), now.get()) != 1) ||
(X509_set_notAfter(certificate.get(), expiration_time.get()) != 1)) {
OSP_DVLOG << "Failed to set before and after ranges.";
return nullptr;
}
X509_NAME* certificate_name = X509_get_subject_name(certificate.get());
if (!AddCertificateField(certificate_name, "CN", name)) {
OSP_DVLOG << "Failed to set subject name";
return nullptr;
}
bssl::UniquePtr<ASN1_BIT_STRING> x(ASN1_BIT_STRING_new());
ASN1_BIT_STRING_set_bit(x.get(), KeyUsageBits::kDigitalSignature, 1);
if (make_ca) {
ASN1_BIT_STRING_set_bit(x.get(), KeyUsageBits::kKeyCertSign, 1);
}
if (X509_add1_ext_i2d(certificate.get(), NID_key_usage, x.get(), 0, 0) != 1) {
OSP_DVLOG << "Failed to set key usage extension";
return nullptr;
}
if (make_ca) {
X509V3_CTX ctx;
X509V3_set_ctx_nodb(&ctx);
X509V3_set_ctx(&ctx, issuer, certificate.get(), nullptr, nullptr, 0);
bssl::UniquePtr<X509_EXTENSION> ex(
X509V3_EXT_nconf_nid(nullptr, &ctx, NID_basic_constraints,
const_cast<char*>("critical,CA:TRUE")));
if (!ex) {
OSP_DVLOG << "Failed to set constraints extension";
return nullptr;
}
void* thing = X509V3_EXT_d2i(ex.get());
X509_add1_ext_i2d(certificate.get(), NID_basic_constraints, thing, 1, 0);
X509V3_EXT_free(NID_basic_constraints, thing);
}
X509_NAME* issuer_name = X509_get_subject_name(issuer);
if ((X509_set_issuer_name(certificate.get(), issuer_name) != 1) ||
(X509_set_pubkey(certificate.get(), &key_pair) != 1) ||
// Unlike all of the other BoringSSL methods here, X509_sign returns
// the size of the signature in bytes.
(X509_sign(certificate.get(), issuer_key, EVP_sha256()) <= 0) ||
(X509_verify(certificate.get(), issuer_key) != 1)) {
OSP_DVLOG << "Failed to set pubkey, set issuer, sign, or verify";
return nullptr;
}
return certificate;
}
} // namespace
bssl::UniquePtr<EVP_PKEY> GenerateRsaKeyPair(int key_bits) {
bssl::UniquePtr<BIGNUM> prime(BN_new());
if (BN_set_word(prime.get(), RSA_F4) == 0) {
return nullptr;
}
bssl::UniquePtr<RSA> rsa(RSA_new());
if (RSA_generate_key_ex(rsa.get(), key_bits, prime.get(), nullptr) == 0) {
return nullptr;
}
bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (EVP_PKEY_set1_RSA(pkey.get(), rsa.get()) == 0) {
return nullptr;
}
return pkey;
}
ErrorOr<bssl::UniquePtr<X509>> CreateSelfSignedX509Certificate(
absl::string_view name,
std::chrono::seconds duration,
const EVP_PKEY& key_pair,
std::chrono::seconds time_since_unix_epoch,
bool make_ca,
X509* issuer,
EVP_PKEY* issuer_key) {
bssl::UniquePtr<X509> certificate =
CreateCertificateInternal(name, duration, key_pair, time_since_unix_epoch,
make_ca, issuer, issuer_key);
if (!certificate) {
return Error::Code::kCertificateCreationError;
}
return certificate;
}
ErrorOr<std::vector<uint8_t>> ExportX509CertificateToDer(
const X509& certificate) {
unsigned char* buffer = nullptr;
// Casting-away the const because the legacy i2d_X509() function is not
// const-correct.
X509* const certificate_ptr = const_cast<X509*>(&certificate);
const int len = i2d_X509(certificate_ptr, &buffer);
if (len <= 0) {
return Error::Code::kCertificateValidationError;
}
std::vector<uint8_t> raw_der_certificate(buffer, buffer + len);
// BoringSSL doesn't free the temporary buffer.
OPENSSL_free(buffer);
return raw_der_certificate;
}
ErrorOr<bssl::UniquePtr<X509>> ImportCertificate(const uint8_t* der_x509_cert,
int der_x509_cert_length) {
if (!der_x509_cert) {
return Error::Code::kErrCertsMissing;
}
bssl::UniquePtr<X509> certificate(
d2i_X509(nullptr, &der_x509_cert, der_x509_cert_length));
if (!certificate) {
return Error::Code::kCertificateValidationError;
}
return certificate;
}
ErrorOr<bssl::UniquePtr<EVP_PKEY>> ImportRSAPrivateKey(
const uint8_t* der_rsa_private_key,
int key_length) {
if (!der_rsa_private_key || key_length == 0) {
return Error::Code::kParameterInvalid;
}
RSA* rsa = RSA_private_key_from_bytes(der_rsa_private_key, key_length);
if (!rsa) {
return Error::Code::kRSAKeyParseError;
}
bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
EVP_PKEY_assign_RSA(pkey.get(), rsa);
return pkey;
}
std::string GetSpkiTlv(X509* cert) {
X509_PUBKEY* key = X509_get_X509_PUBKEY(cert);
int len = i2d_X509_PUBKEY(key, nullptr);
if (len <= 0) {
return {};
}
std::string x(len, 0);
uint8_t* data = reinterpret_cast<uint8_t*>(&x[0]);
if (!i2d_X509_PUBKEY(key, &data)) {
return {};
}
return x;
}
ErrorOr<uint64_t> ParseDerUint64(const ASN1_INTEGER* asn1int) {
const uint8_t* data = ASN1_STRING_get0_data(asn1int);
int length = ASN1_STRING_length(asn1int);
if (length > 8 || length <= 0) {
return Error::Code::kParameterInvalid;
}
uint64_t result = 0;
for (int i = 0; i < length; ++i) {
result = (result << 8) | data[i];
}
return result;
}
} // namespace openscreen
|