1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "util/yet_another_bit_vector.h"
#include <algorithm>
#include <utility>
#include "util/osp_logging.h"
namespace openscreen {
namespace {
// Returns a bitmask where all the bits whose positions are in the range
// [begin,begin+count) are set, and all other bits are cleared.
constexpr uint64_t MakeBitmask(int begin, int count) {
// Form a contiguous sequence of bits by subtracting one from the appropriate
// power of 2. Set all the bits if count >= 64.
const uint64_t bits_in_wrong_position =
(count >= std::numeric_limits<uint64_t>::digits)
? std::numeric_limits<uint64_t>::max()
: ((uint64_t{1} << count) - 1);
// Now shift the contiguous sequence of bits into the correct position.
return bits_in_wrong_position << begin;
}
} // namespace
YetAnotherBitVector::YetAnotherBitVector() : size_(0), bits_{.as_integer = 0} {}
YetAnotherBitVector::YetAnotherBitVector(int size,
YetAnotherBitVector::Fill fill) {
InitializeForNewSize(size, fill);
}
YetAnotherBitVector::~YetAnotherBitVector() {
if (using_array_storage()) {
delete[] bits_.as_array;
}
}
YetAnotherBitVector::YetAnotherBitVector(YetAnotherBitVector&& other)
: size_(other.size_), bits_(other.bits_) {
other.size_ = 0;
other.bits_.as_integer = 0;
}
YetAnotherBitVector& YetAnotherBitVector::operator=(
YetAnotherBitVector&& other) {
if (this == &other) {
return *this;
}
if (using_array_storage()) {
delete[] bits_.as_array;
}
size_ = other.size_;
bits_ = other.bits_;
other.size_ = 0;
other.bits_.as_integer = 0;
return *this;
}
bool YetAnotherBitVector::IsSet(int pos) const {
OSP_DCHECK_LT(pos, size_);
const uint64_t* const elem = Select(&pos);
return (*elem & (uint64_t{1} << pos)) != 0;
}
void YetAnotherBitVector::Set(int pos) {
OSP_DCHECK_LT(pos, size_);
uint64_t* const elem = const_cast<uint64_t*>(Select(&pos));
*elem |= (uint64_t{1} << pos);
}
void YetAnotherBitVector::Clear(int pos) {
OSP_DCHECK_LT(pos, size_);
uint64_t* const elem = const_cast<uint64_t*>(Select(&pos));
*elem &= ~(uint64_t{1} << pos);
}
void YetAnotherBitVector::Resize(int new_size, YetAnotherBitVector::Fill fill) {
if (using_array_storage()) {
delete[] bits_.as_array;
}
InitializeForNewSize(new_size, fill);
}
void YetAnotherBitVector::SetAll() {
// Implementation note: Set all bits except those in the last integer that are
// outside the defined range. This allows the other operations to become
// simpler and more efficient because they can assume the bits moving into the
// valid range are not set.
if (using_array_storage()) {
const int last_index = array_size() - 1;
uint64_t* const last = &bits_.as_array[last_index];
std::fill(&bits_.as_array[0], last, kAllBitsSet);
*last = MakeBitmask(0, size_ - (last_index * kBitsPerInteger));
} else {
bits_.as_integer = MakeBitmask(0, size_);
}
}
void YetAnotherBitVector::ClearAll() {
if (using_array_storage()) {
std::fill(&bits_.as_array[0], &bits_.as_array[array_size()], kNoBitsSet);
} else {
bits_.as_integer = kNoBitsSet;
}
}
void YetAnotherBitVector::ShiftRight(int steps) {
// Negative |steps| should probably mean "shift left," but this is not
// implemented.
OSP_DCHECK_GE(steps, 0);
OSP_DCHECK_LE(steps, size_);
if (using_array_storage()) {
// If |steps| is greater than one integer's worth of bits, first shift the
// array elements right. This is effectively shifting all the bits right by
// some multiple of 64.
const int num_integers = array_size();
if (steps >= kBitsPerInteger) {
const int integer_steps = steps / kBitsPerInteger;
for (int i = integer_steps; i < num_integers; ++i) {
bits_.as_array[i - integer_steps] = bits_.as_array[i];
}
std::fill(&bits_.as_array[num_integers - integer_steps],
&bits_.as_array[num_integers], kNoBitsSet);
steps %= kBitsPerInteger;
}
// With |steps| now less than 64, shift the bits right within each array
// element. Start from the back of the array, working towards the front, and
// propagating any bits that are moving across array elements.
uint64_t incoming_carry_bits = 0;
const uint64_t outgoing_mask = MakeBitmask(0, steps);
for (int i = num_integers; i-- > 0;) {
const uint64_t outgoing_carry_bits = bits_.as_array[i] & outgoing_mask;
bits_.as_array[i] >>= steps;
bits_.as_array[i] |= (incoming_carry_bits << (kBitsPerInteger - steps));
incoming_carry_bits = outgoing_carry_bits;
}
} else {
if (steps < kBitsPerInteger) {
bits_.as_integer >>= steps;
} else {
bits_.as_integer = 0;
}
}
}
int YetAnotherBitVector::FindFirstSet() const {
// Almost all processors provide a single instruction to "count trailing
// zeros" in an integer, which is great because this is the same as the
// 0-based index of the first set bit. So, have the compiler use that
// whenever it's available. However, note that the intrinsic (and the CPU
// instruction used) provides undefined results when operating on zero; and
// so that special case is checked and handled.
#if defined(__clang__) || defined(__GNUC__)
#define CountTrailingZeros(bits) __builtin_ctzll(bits)
#else
const auto CountTrailingZeros = [](uint64_t bits) -> int {
// Based on one of the public domain "Bit Twiddling Hacks" heuristics:
// https://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightParallel
// clang-format off
bits &= ~bits + 1;
int count = kBitsPerInteger;
if (bits) --count;
if (bits & UINT64_C(0x00000000ffffffff)) count -= 32;
if (bits & UINT64_C(0x0000ffff0000ffff)) count -= 16;
if (bits & UINT64_C(0x00ff00ff00ff00ff)) count -= 8;
if (bits & UINT64_C(0x0f0f0f0f0f0f0f0f)) count -= 4;
if (bits & UINT64_C(0x3333333333333333)) count -= 2;
if (bits & UINT64_C(0x5555555555555555)) count -= 1;
return count;
// clang-format on
};
#endif
if (using_array_storage()) {
for (int i = 0, end = array_size(); i < end; ++i) {
if (bits_.as_array[i] != 0) {
return (i * kBitsPerInteger) + CountTrailingZeros(bits_.as_array[i]);
}
}
return size_; // All bits are not set.
}
return (bits_.as_integer != 0) ? CountTrailingZeros(bits_.as_integer) : size_;
}
int YetAnotherBitVector::CountBitsSet(int begin, int end) const {
OSP_DCHECK_LE(0, begin);
OSP_DCHECK_LE(begin, end);
OSP_DCHECK_LE(end, size_);
// Almost all processors provide a single instruction to "count the number of
// bits set" in an integer. So, have the compiler use that whenever it's
// available.
#if defined(__clang__) || defined(__GNUC__)
#define PopCount(bits) __builtin_popcountll(bits)
#else
const auto PopCount = [](uint64_t bits) -> int {
// Based on one of the public domain "Bit Twiddling Hacks" heuristics:
// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
constexpr int kBitsPerByte = 8;
bits = bits - ((bits >> 1) & (kAllBitsSet / 3));
bits = (bits & (kAllBitsSet / 15 * 3)) +
((bits >> 2) & (kAllBitsSet / 15 * 3));
bits = (bits + (bits >> 4)) & (kAllBitsSet / 255 * 15);
const uint64_t count =
(bits * (kAllBitsSet / 255)) >> ((sizeof(uint64_t) - 1) * kBitsPerByte);
return static_cast<int>(count);
};
#endif
int count;
if (using_array_storage()) {
const int first = begin / kBitsPerInteger;
const int last = (end - 1) / kBitsPerInteger;
if (first == last) {
count = PopCount(bits_.as_array[first] &
MakeBitmask(begin % kBitsPerInteger, end - begin));
} else if (first < last) {
// Count a subset of the bits in the first and last integers (according to
// |begin| and |end|), and all of the bits in the integers in-between.
const uint64_t* p = &bits_.as_array[first];
count = PopCount((*p) &
MakeBitmask(begin % kBitsPerInteger, kBitsPerInteger));
for (++p; p != &bits_.as_array[last]; ++p) {
count += PopCount(*p);
}
count += PopCount((*p) & MakeBitmask(0, end - (last * kBitsPerInteger)));
} else {
count = 0;
}
} else {
count = PopCount(bits_.as_integer & MakeBitmask(begin, end - begin));
}
return count;
}
void YetAnotherBitVector::InitializeForNewSize(int new_size, Fill fill) {
OSP_DCHECK_GE(new_size, 0);
size_ = new_size;
if (using_array_storage()) {
bits_.as_array = new uint64_t[array_size()];
}
if (fill == SET) {
SetAll();
} else {
ClearAll();
}
}
const uint64_t* YetAnotherBitVector::Select(int* pos) const {
if (using_array_storage()) {
const int index = *pos / kBitsPerInteger;
*pos %= kBitsPerInteger;
return &bits_.as_array[index];
}
return &bits_.as_integer;
}
// NOTE: These declarations can be removed when C++17 compliance is mandatory
// for all embedders, as static constexpr members can be declared inline.
constexpr int YetAnotherBitVector::kBitsPerInteger;
constexpr uint64_t YetAnotherBitVector::kAllBitsSet;
constexpr uint64_t YetAnotherBitVector::kNoBitsSet;
} // namespace openscreen
|