1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "libtimeinstate"
#include "cputimeinstate.h"
#include <bpf_timeinstate.h>
#include <dirent.h>
#include <errno.h>
#include <inttypes.h>
#include <sys/sysinfo.h>
#include <mutex>
#include <numeric>
#include <optional>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#include <android-base/file.h>
#include <android-base/parseint.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <bpf/BpfMap.h>
#include <libbpf.h>
#include <log/log.h>
using android::base::StringPrintf;
using android::base::unique_fd;
namespace android {
namespace bpf {
static std::mutex gInitializedMutex;
static bool gInitialized = false;
static std::mutex gTrackingMutex;
static bool gTracking = false;
static uint32_t gNPolicies = 0;
static uint32_t gNCpus = 0;
static std::vector<std::vector<uint32_t>> gPolicyFreqs;
static std::vector<std::vector<uint32_t>> gPolicyCpus;
static std::vector<uint32_t> gCpuIndexMap;
static std::set<uint32_t> gAllFreqs;
static unique_fd gTisTotalMapFd;
static unique_fd gTisMapFd;
static unique_fd gConcurrentMapFd;
static unique_fd gUidLastUpdateMapFd;
static unique_fd gPidTisMapFd;
static std::optional<std::vector<uint32_t>> readNumbersFromFile(const std::string &path) {
std::string data;
if (!android::base::ReadFileToString(path, &data)) return {};
auto strings = android::base::Split(data, " \n");
std::vector<uint32_t> ret;
for (const auto &s : strings) {
if (s.empty()) continue;
uint32_t n;
if (!android::base::ParseUint(s, &n)) return {};
ret.emplace_back(n);
}
return ret;
}
static int isPolicyFile(const struct dirent *d) {
return android::base::StartsWith(d->d_name, "policy");
}
static int comparePolicyFiles(const struct dirent **d1, const struct dirent **d2) {
uint32_t policyN1, policyN2;
if (sscanf((*d1)->d_name, "policy%" SCNu32 "", &policyN1) != 1 ||
sscanf((*d2)->d_name, "policy%" SCNu32 "", &policyN2) != 1)
return 0;
return policyN1 - policyN2;
}
static bool initGlobals() {
std::lock_guard<std::mutex> guard(gInitializedMutex);
if (gInitialized) return true;
gNCpus = get_nprocs_conf();
struct dirent **dirlist;
const char basepath[] = "/sys/devices/system/cpu/cpufreq";
int ret = scandir(basepath, &dirlist, isPolicyFile, comparePolicyFiles);
if (ret == -1 || ret == 0) return false;
gNPolicies = ret;
std::vector<std::string> policyFileNames;
for (uint32_t i = 0; i < gNPolicies; ++i) {
policyFileNames.emplace_back(dirlist[i]->d_name);
free(dirlist[i]);
}
free(dirlist);
uint32_t max_cpu_number = 0;
for (const auto &policy : policyFileNames) {
std::vector<uint32_t> freqs;
for (const auto &name : {"available", "boost"}) {
std::string path =
StringPrintf("%s/%s/scaling_%s_frequencies", basepath, policy.c_str(), name);
auto nums = readNumbersFromFile(path);
if (!nums) continue;
freqs.insert(freqs.end(), nums->begin(), nums->end());
}
if (freqs.empty()) return false;
std::sort(freqs.begin(), freqs.end());
gPolicyFreqs.emplace_back(freqs);
for (auto freq : freqs) gAllFreqs.insert(freq);
std::string path = StringPrintf("%s/%s/%s", basepath, policy.c_str(), "related_cpus");
auto cpus = readNumbersFromFile(path);
if (!cpus) return false;
for (auto cpu : *cpus) {
if(cpu > max_cpu_number)
max_cpu_number = cpu;
}
gPolicyCpus.emplace_back(*cpus);
}
gCpuIndexMap = std::vector<uint32_t>(max_cpu_number+1, -1);
uint32_t cpuorder = 0;
for (const auto &cpuList : gPolicyCpus) {
for (auto cpu : cpuList) {
gCpuIndexMap[cpu] = cpuorder++;
}
}
gTisTotalMapFd =
unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_total_time_in_state_map")};
if (gTisTotalMapFd < 0) return false;
gTisMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_time_in_state_map")};
if (gTisMapFd < 0) return false;
gConcurrentMapFd =
unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_concurrent_times_map")};
if (gConcurrentMapFd < 0) return false;
gUidLastUpdateMapFd =
unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_last_update_map")};
if (gUidLastUpdateMapFd < 0) return false;
gPidTisMapFd = unique_fd{mapRetrieveRO(BPF_FS_PATH "map_timeInState_pid_time_in_state_map")};
if (gPidTisMapFd < 0) return false;
unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_map"));
if (trackedPidMapFd < 0) return false;
gInitialized = true;
return true;
}
static int retrieveProgramFd(const std::string &eventType, const std::string &eventName) {
std::string path = StringPrintf(BPF_FS_PATH "prog_timeInState_tracepoint_%s_%s",
eventType.c_str(), eventName.c_str());
return retrieveProgram(path.c_str());
}
static bool attachTracepointProgram(const std::string &eventType, const std::string &eventName) {
int prog_fd = retrieveProgramFd(eventType, eventName);
if (prog_fd < 0) return false;
return bpf_attach_tracepoint(prog_fd, eventType.c_str(), eventName.c_str()) >= 0;
}
static std::optional<uint32_t> getPolicyFreqIdx(uint32_t policy) {
auto path = StringPrintf("/sys/devices/system/cpu/cpufreq/policy%u/scaling_cur_freq",
gPolicyCpus[policy][0]);
auto freqVec = readNumbersFromFile(path);
if (!freqVec.has_value() || freqVec->size() != 1) return {};
for (uint32_t idx = 0; idx < gPolicyFreqs[policy].size(); ++idx) {
if ((*freqVec)[0] == gPolicyFreqs[policy][idx]) return idx + 1;
}
return {};
}
// Check if tracking is expected to work without activating it.
bool isTrackingUidTimesSupported() {
auto freqs = getCpuFreqs();
if (!freqs || freqs->empty()) return false;
if (gTracking) return true;
if (retrieveProgramFd("sched", "sched_switch") < 0) return false;
if (retrieveProgramFd("power", "cpu_frequency") < 0) return false;
if (retrieveProgramFd("sched", "sched_process_free") < 0) return false;
return true;
}
// Start tracking and aggregating data to be reported by getUidCpuFreqTimes and getUidsCpuFreqTimes.
// Returns true on success, false otherwise.
// Tracking is active only once a live process has successfully called this function; if the calling
// process dies then it must be called again to resume tracking.
// This function should *not* be called while tracking is already active; doing so is unnecessary
// and can lead to accounting errors.
bool startTrackingUidTimes() {
std::lock_guard<std::mutex> guard(gTrackingMutex);
if (!initGlobals()) return false;
if (gTracking) return true;
unique_fd cpuPolicyFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_cpu_policy_map"));
if (cpuPolicyFd < 0) return false;
for (uint32_t i = 0; i < gPolicyCpus.size(); ++i) {
for (auto &cpu : gPolicyCpus[i]) {
if (writeToMapEntry(cpuPolicyFd, &cpu, &i, BPF_ANY)) return false;
}
}
unique_fd freqToIdxFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_freq_to_idx_map"));
if (freqToIdxFd < 0) return false;
freq_idx_key_t key;
for (uint32_t i = 0; i < gNPolicies; ++i) {
key.policy = i;
for (uint32_t j = 0; j < gPolicyFreqs[i].size(); ++j) {
key.freq = gPolicyFreqs[i][j];
// Start indexes at 1 so that uninitialized state is distinguishable from lowest freq.
// The uid_times map still uses 0-based indexes, and the sched_switch program handles
// conversion between them, so this does not affect our map reading code.
uint32_t idx = j + 1;
if (writeToMapEntry(freqToIdxFd, &key, &idx, BPF_ANY)) return false;
}
}
unique_fd cpuLastUpdateFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_cpu_last_update_map"));
if (cpuLastUpdateFd < 0) return false;
std::vector<uint64_t> zeros(get_nprocs_conf(), 0);
uint32_t zero = 0;
if (writeToMapEntry(cpuLastUpdateFd, &zero, zeros.data(), BPF_ANY)) return false;
unique_fd nrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_nr_active_map"));
if (nrActiveFd < 0) return false;
if (writeToMapEntry(nrActiveFd, &zero, &zero, BPF_ANY)) return false;
unique_fd policyNrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_policy_nr_active_map"));
if (policyNrActiveFd < 0) return false;
for (uint32_t i = 0; i < gNPolicies; ++i) {
if (writeToMapEntry(policyNrActiveFd, &i, &zero, BPF_ANY)) return false;
}
unique_fd policyFreqIdxFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_policy_freq_idx_map"));
if (policyFreqIdxFd < 0) return false;
for (uint32_t i = 0; i < gNPolicies; ++i) {
auto freqIdx = getPolicyFreqIdx(i);
if (!freqIdx.has_value()) return false;
if (writeToMapEntry(policyFreqIdxFd, &i, &(*freqIdx), BPF_ANY)) return false;
}
gTracking = attachTracepointProgram("sched", "sched_switch") &&
attachTracepointProgram("power", "cpu_frequency") &&
attachTracepointProgram("sched", "sched_process_free");
return gTracking;
}
std::optional<std::vector<std::vector<uint32_t>>> getCpuFreqs() {
if (!gInitialized && !initGlobals()) return {};
return gPolicyFreqs;
}
std::optional<std::vector<std::vector<uint64_t>>> getTotalCpuFreqTimes() {
if (!gInitialized && !initGlobals()) return {};
std::vector<std::vector<uint64_t>> out;
uint32_t maxFreqCount = 0;
for (const auto &freqList : gPolicyFreqs) {
if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
out.emplace_back(freqList.size(), 0);
}
std::vector<uint64_t> vals(gNCpus);
const uint32_t freqCount = maxFreqCount <= MAX_FREQS_FOR_TOTAL ? maxFreqCount :
MAX_FREQS_FOR_TOTAL;
for (uint32_t freqIdx = 0; freqIdx < freqCount; ++freqIdx) {
if (findMapEntry(gTisTotalMapFd, &freqIdx, vals.data())) return {};
for (uint32_t policyIdx = 0; policyIdx < gNPolicies; ++policyIdx) {
if (freqIdx >= gPolicyFreqs[policyIdx].size()) continue;
for (const auto &cpu : gPolicyCpus[policyIdx]) {
out[policyIdx][freqIdx] += vals[gCpuIndexMap[cpu]];
}
}
}
return out;
}
// Retrieve the times in ns that uid spent running at each CPU frequency.
// Return contains no value on error, otherwise it contains a vector of vectors using the format:
// [[t0_0, t0_1, ...],
// [t1_0, t1_1, ...], ...]
// where ti_j is the ns that uid spent running on the ith cluster at that cluster's jth lowest freq.
std::optional<std::vector<std::vector<uint64_t>>> getUidCpuFreqTimes(uint32_t uid) {
if (!gInitialized && !initGlobals()) return {};
std::vector<std::vector<uint64_t>> out;
uint32_t maxFreqCount = 0;
for (const auto &freqList : gPolicyFreqs) {
if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
out.emplace_back(freqList.size(), 0);
}
std::vector<tis_val_t> vals(gNCpus);
for (uint32_t i = 0; i <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++i) {
const time_key_t key = {.uid = uid, .bucket = i};
if (findMapEntry(gTisMapFd, &key, vals.data())) {
time_key_t tmpKey;
if (errno != ENOENT || getFirstMapKey(gTisMapFd, &tmpKey)) return {};
continue;
}
auto offset = i * FREQS_PER_ENTRY;
auto nextOffset = (i + 1) * FREQS_PER_ENTRY;
for (uint32_t j = 0; j < gNPolicies; ++j) {
if (offset >= gPolicyFreqs[j].size()) continue;
auto begin = out[j].begin() + offset;
auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY : out[j].end();
for (const auto &cpu : gPolicyCpus[j]) {
std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin,
std::plus<uint64_t>());
}
}
}
return out;
}
static std::optional<bool> uidUpdatedSince(uint32_t uid, uint64_t lastUpdate,
uint64_t *newLastUpdate) {
uint64_t uidLastUpdate;
if (findMapEntry(gUidLastUpdateMapFd, &uid, &uidLastUpdate)) return {};
// Updates that occurred during the previous read may have been missed. To mitigate
// this, don't ignore entries updated up to 1s before *lastUpdate
constexpr uint64_t NSEC_PER_SEC = 1000000000;
if (uidLastUpdate + NSEC_PER_SEC < lastUpdate) return false;
if (uidLastUpdate > *newLastUpdate) *newLastUpdate = uidLastUpdate;
return true;
}
// Retrieve the times in ns that each uid spent running at each CPU freq.
// Return contains no value on error, otherwise it contains a map from uids to vectors of vectors
// using the format:
// { uid0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...],
// uid1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... }
// where ti_j_k is the ns uid i spent running on the jth cluster at the cluster's kth lowest freq.
std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>>
getUidsCpuFreqTimes() {
return getUidsUpdatedCpuFreqTimes(nullptr);
}
// Retrieve the times in ns that each uid spent running at each CPU freq, excluding UIDs that have
// not run since before lastUpdate.
// Return format is the same as getUidsCpuFreqTimes()
std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>>
getUidsUpdatedCpuFreqTimes(uint64_t *lastUpdate) {
if (!gInitialized && !initGlobals()) return {};
time_key_t key, prevKey;
std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>> map;
if (getFirstMapKey(gTisMapFd, &key)) {
if (errno == ENOENT) return map;
return std::nullopt;
}
std::vector<std::vector<uint64_t>> mapFormat;
for (const auto &freqList : gPolicyFreqs) mapFormat.emplace_back(freqList.size(), 0);
uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0;
std::vector<tis_val_t> vals(gNCpus);
do {
if (lastUpdate) {
auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate);
if (!uidUpdated.has_value()) return {};
if (!*uidUpdated) continue;
}
if (findMapEntry(gTisMapFd, &key, vals.data())) return {};
if (map.find(key.uid) == map.end()) map.emplace(key.uid, mapFormat);
auto offset = key.bucket * FREQS_PER_ENTRY;
auto nextOffset = (key.bucket + 1) * FREQS_PER_ENTRY;
for (uint32_t i = 0; i < gNPolicies; ++i) {
if (offset >= gPolicyFreqs[i].size()) continue;
auto begin = map[key.uid][i].begin() + offset;
auto end = nextOffset < gPolicyFreqs[i].size() ? begin + FREQS_PER_ENTRY :
map[key.uid][i].end();
for (const auto &cpu : gPolicyCpus[i]) {
std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin,
std::plus<uint64_t>());
}
}
prevKey = key;
} while (prevKey = key, !getNextMapKey(gTisMapFd, &prevKey, &key));
if (errno != ENOENT) return {};
if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate;
return map;
}
static bool verifyConcurrentTimes(const concurrent_time_t &ct) {
uint64_t activeSum = std::accumulate(ct.active.begin(), ct.active.end(), (uint64_t)0);
uint64_t policySum = 0;
for (const auto &vec : ct.policy) {
policySum += std::accumulate(vec.begin(), vec.end(), (uint64_t)0);
}
return activeSum == policySum;
}
// Retrieve the times in ns that uid spent running concurrently with each possible number of other
// tasks on each cluster (policy times) and overall (active times).
// Return contains no value on error, otherwise it contains a concurrent_time_t with the format:
// {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...]}
// where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent
// running on the ith cluster, concurrently with tasks on j other cpus in the same cluster
std::optional<concurrent_time_t> getUidConcurrentTimes(uint32_t uid, bool retry) {
if (!gInitialized && !initGlobals()) return {};
concurrent_time_t ret = {.active = std::vector<uint64_t>(gNCpus, 0)};
for (const auto &cpuList : gPolicyCpus) ret.policy.emplace_back(cpuList.size(), 0);
std::vector<concurrent_val_t> vals(gNCpus);
for (uint32_t i = 0; i <= (gNCpus - 1) / CPUS_PER_ENTRY; ++i) {
const time_key_t key = {.uid = uid, .bucket = i};
if (findMapEntry(gConcurrentMapFd, &key, vals.data())) {
time_key_t tmpKey;
if (errno != ENOENT || getFirstMapKey(gConcurrentMapFd, &tmpKey)) return {};
continue;
}
auto offset = key.bucket * CPUS_PER_ENTRY;
auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY;
auto activeBegin = ret.active.begin() + offset;
auto activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret.active.end();
for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) {
std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin,
std::plus<uint64_t>());
}
for (uint32_t policy = 0; policy < gNPolicies; ++policy) {
if (offset >= gPolicyCpus[policy].size()) continue;
auto policyBegin = ret.policy[policy].begin() + offset;
auto policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY
: ret.policy[policy].end();
for (const auto &cpu : gPolicyCpus[policy]) {
std::transform(policyBegin, policyEnd, std::begin(vals[gCpuIndexMap[cpu]].policy),
policyBegin, std::plus<uint64_t>());
}
}
}
if (!verifyConcurrentTimes(ret) && retry) return getUidConcurrentTimes(uid, false);
return ret;
}
// Retrieve the times in ns that each uid spent running concurrently with each possible number of
// other tasks on each cluster (policy times) and overall (active times).
// Return contains no value on error, otherwise it contains a map from uids to concurrent_time_t's
// using the format:
// { uid0 -> {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...] }, ...}
// where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent
// running on the ith cluster, concurrently with tasks on j other cpus in the same cluster.
std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsConcurrentTimes() {
return getUidsUpdatedConcurrentTimes(nullptr);
}
// Retrieve the times in ns that each uid spent running concurrently with each possible number of
// other tasks on each cluster (policy times) and overall (active times), excluding UIDs that have
// not run since before lastUpdate.
// Return format is the same as getUidsConcurrentTimes()
std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsUpdatedConcurrentTimes(
uint64_t *lastUpdate) {
if (!gInitialized && !initGlobals()) return {};
time_key_t key, prevKey;
std::unordered_map<uint32_t, concurrent_time_t> ret;
if (getFirstMapKey(gConcurrentMapFd, &key)) {
if (errno == ENOENT) return ret;
return {};
}
concurrent_time_t retFormat = {.active = std::vector<uint64_t>(gNCpus, 0)};
for (const auto &cpuList : gPolicyCpus) retFormat.policy.emplace_back(cpuList.size(), 0);
std::vector<concurrent_val_t> vals(gNCpus);
std::vector<uint64_t>::iterator activeBegin, activeEnd, policyBegin, policyEnd;
uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0;
do {
if (key.bucket > (gNCpus - 1) / CPUS_PER_ENTRY) return {};
if (lastUpdate) {
auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate);
if (!uidUpdated.has_value()) return {};
if (!*uidUpdated) continue;
}
if (findMapEntry(gConcurrentMapFd, &key, vals.data())) return {};
if (ret.find(key.uid) == ret.end()) ret.emplace(key.uid, retFormat);
auto offset = key.bucket * CPUS_PER_ENTRY;
auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY;
activeBegin = ret[key.uid].active.begin();
activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret[key.uid].active.end();
for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) {
std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin,
std::plus<uint64_t>());
}
for (uint32_t policy = 0; policy < gNPolicies; ++policy) {
if (offset >= gPolicyCpus[policy].size()) continue;
policyBegin = ret[key.uid].policy[policy].begin() + offset;
policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY
: ret[key.uid].policy[policy].end();
for (const auto &cpu : gPolicyCpus[policy]) {
std::transform(policyBegin, policyEnd, std::begin(vals[gCpuIndexMap[cpu]].policy),
policyBegin, std::plus<uint64_t>());
}
}
} while (prevKey = key, !getNextMapKey(gConcurrentMapFd, &prevKey, &key));
if (errno != ENOENT) return {};
for (const auto &[key, value] : ret) {
if (!verifyConcurrentTimes(value)) {
auto val = getUidConcurrentTimes(key, false);
if (val.has_value()) ret[key] = val.value();
}
}
if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate;
return ret;
}
// Clear all time in state data for a given uid. Returns false on error, true otherwise.
// This is only suitable for clearing data when an app is uninstalled; if called on a UID with
// running tasks it will cause time in state vs. concurrent time totals to be inconsistent for that
// UID.
bool clearUidTimes(uint32_t uid) {
if (!gInitialized && !initGlobals()) return false;
time_key_t key = {.uid = uid};
uint32_t maxFreqCount = 0;
for (const auto &freqList : gPolicyFreqs) {
if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
}
tis_val_t zeros = {0};
std::vector<tis_val_t> vals(gNCpus, zeros);
for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) {
if (writeToMapEntry(gTisMapFd, &key, vals.data(), BPF_EXIST) && errno != ENOENT)
return false;
if (deleteMapEntry(gTisMapFd, &key) && errno != ENOENT) return false;
}
concurrent_val_t czeros = { .active = {0}, .policy = {0}, };
std::vector<concurrent_val_t> cvals(gNCpus, czeros);
for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) {
if (writeToMapEntry(gConcurrentMapFd, &key, cvals.data(), BPF_EXIST) && errno != ENOENT)
return false;
if (deleteMapEntry(gConcurrentMapFd, &key) && errno != ENOENT) return false;
}
if (deleteMapEntry(gUidLastUpdateMapFd, &uid) && errno != ENOENT) return false;
return true;
}
bool startTrackingProcessCpuTimes(pid_t pid) {
if (!gInitialized && !initGlobals()) return false;
unique_fd trackedPidHashMapFd(
mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_hash_map"));
if (trackedPidHashMapFd < 0) return false;
unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_map"));
if (trackedPidMapFd < 0) return false;
for (uint32_t index = 0; index < MAX_TRACKED_PIDS; index++) {
// Find first available [index, pid] entry in the pid_tracked_hash_map map
if (writeToMapEntry(trackedPidHashMapFd, &index, &pid, BPF_NOEXIST) != 0) {
if (errno != EEXIST) {
return false;
}
continue; // This index is already taken
}
tracked_pid_t tracked_pid = {.pid = pid, .state = TRACKED_PID_STATE_ACTIVE};
if (writeToMapEntry(trackedPidMapFd, &index, &tracked_pid, BPF_ANY) != 0) {
return false;
}
return true;
}
return false;
}
// Marks the specified task identified by its PID (aka TID) for CPU time-in-state tracking
// aggregated with other tasks sharing the same TGID and aggregation key.
bool startAggregatingTaskCpuTimes(pid_t pid, uint16_t aggregationKey) {
if (!gInitialized && !initGlobals()) return false;
unique_fd taskAggregationMapFd(
mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_task_aggregation_map"));
if (taskAggregationMapFd < 0) return false;
return writeToMapEntry(taskAggregationMapFd, &pid, &aggregationKey, BPF_ANY) == 0;
}
// Retrieves the times in ns that each thread spent running at each CPU freq, aggregated by
// aggregation key.
// Return contains no value on error, otherwise it contains a map from aggregation keys
// to vectors of vectors using the format:
// { aggKey0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...],
// aggKey1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... }
// where ti_j_k is the ns tid i spent running on the jth cluster at the cluster's kth lowest freq.
std::optional<std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>>>
getAggregatedTaskCpuFreqTimes(pid_t tgid, const std::vector<uint16_t> &aggregationKeys) {
if (!gInitialized && !initGlobals()) return {};
uint32_t maxFreqCount = 0;
std::vector<std::vector<uint64_t>> mapFormat;
for (const auto &freqList : gPolicyFreqs) {
if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
mapFormat.emplace_back(freqList.size(), 0);
}
bool dataCollected = false;
std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>> map;
std::vector<tis_val_t> vals(gNCpus);
for (uint16_t aggregationKey : aggregationKeys) {
map.emplace(aggregationKey, mapFormat);
aggregated_task_tis_key_t key{.tgid = tgid, .aggregation_key = aggregationKey};
for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) {
if (findMapEntry(gPidTisMapFd, &key, vals.data()) != 0) {
if (errno != ENOENT) {
return {};
}
continue;
} else {
dataCollected = true;
}
// Combine data by aggregating time-in-state data grouped by CPU cluster aka policy.
uint32_t offset = key.bucket * FREQS_PER_ENTRY;
uint32_t nextOffset = offset + FREQS_PER_ENTRY;
for (uint32_t j = 0; j < gNPolicies; ++j) {
if (offset >= gPolicyFreqs[j].size()) continue;
auto begin = map[key.aggregation_key][j].begin() + offset;
auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY
: map[key.aggregation_key][j].end();
for (const auto &cpu : gPolicyCpus[j]) {
std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin,
std::plus<uint64_t>());
}
}
}
}
if (!dataCollected) {
// Check if eBPF is supported on this device. If it is, gTisMap should not be empty.
time_key_t key;
if (getFirstMapKey(gTisMapFd, &key) != 0) {
return {};
}
}
return map;
}
} // namespace bpf
} // namespace android
|