1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "FlattenableHelpersTest"
#include <ui/FlattenableHelpers.h>
#include <gtest/gtest.h>
#include <utils/Flattenable.h>
#include <cstdint>
#include <memory>
#include <optional>
#include <string>
#include <vector>
namespace android {
namespace {
struct TestLightFlattenable : LightFlattenable<TestLightFlattenable> {
std::unique_ptr<int32_t> ptr;
bool isFixedSize() const { return true; }
size_t getFlattenedSize() const { return sizeof(int32_t); }
status_t flatten(void* buffer, size_t size) const {
FlattenableUtils::write(buffer, size, *ptr);
return OK;
}
status_t unflatten(void const* buffer, size_t size) {
int32_t value;
FlattenableUtils::read(buffer, size, value);
ptr = std::make_unique<int32_t>(value);
return OK;
}
};
class FlattenableHelpersTest : public testing::Test {
public:
template <class T>
void testWriteThenRead(const T& value, size_t bufferSize) {
std::vector<int8_t> buffer(bufferSize);
auto rawBuffer = reinterpret_cast<void*>(buffer.data());
size_t size = buffer.size();
ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));
auto rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
size = buffer.size();
T valueRead;
ASSERT_EQ(OK, FlattenableHelpers::unflatten(&rawReadBuffer, &size, &valueRead));
EXPECT_EQ(value, valueRead);
}
template <class T>
void testTriviallyCopyable(const T& value) {
testWriteThenRead(value, sizeof(T));
}
template <class T>
void testWriteThenRead(const T& value) {
testWriteThenRead(value, FlattenableHelpers::getFlattenedSize(value));
}
};
TEST_F(FlattenableHelpersTest, TriviallyCopyable) {
testTriviallyCopyable(42);
testTriviallyCopyable(1LL << 63);
testTriviallyCopyable(false);
testTriviallyCopyable(true);
testTriviallyCopyable(std::optional<int>());
testTriviallyCopyable(std::optional<int>(4));
}
TEST_F(FlattenableHelpersTest, String) {
testWriteThenRead(std::string("Android"));
testWriteThenRead(std::string());
}
TEST_F(FlattenableHelpersTest, Vector) {
testWriteThenRead(std::vector<int>({1, 2, 3}));
testWriteThenRead(std::vector<int>());
}
TEST_F(FlattenableHelpersTest, OptionalOfLightFlattenable) {
std::vector<size_t> buffer;
constexpr int kInternalValue = 16;
{
std::optional<TestLightFlattenable> value =
TestLightFlattenable{.ptr = std::make_unique<int32_t>(kInternalValue)};
buffer.assign(FlattenableHelpers::getFlattenedSize(value), 0);
void* rawBuffer = reinterpret_cast<void*>(buffer.data());
size_t size = buffer.size();
ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));
}
const void* rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
size_t size = buffer.size();
std::optional<TestLightFlattenable> valueRead;
ASSERT_EQ(OK, FlattenableHelpers::unflatten(&rawReadBuffer, &size, &valueRead));
ASSERT_TRUE(valueRead.has_value());
EXPECT_EQ(kInternalValue, *valueRead->ptr);
}
TEST_F(FlattenableHelpersTest, NullOptionalOfLightFlattenable) {
std::vector<size_t> buffer;
{
std::optional<TestLightFlattenable> value;
buffer.assign(FlattenableHelpers::getFlattenedSize(value), 0);
void* rawBuffer = reinterpret_cast<void*>(buffer.data());
size_t size = buffer.size();
ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));
}
const void* rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
size_t size = buffer.size();
std::optional<TestLightFlattenable> valueRead;
ASSERT_EQ(OK, FlattenableHelpers::unflatten(&rawReadBuffer, &size, &valueRead));
ASSERT_FALSE(valueRead.has_value());
}
// If a struct is both trivially copyable and light flattenable we should treat it
// as LigthFlattenable.
TEST_F(FlattenableHelpersTest, TriviallyCopyableAndLightFlattenableIsFlattenedAsLightFlattenable) {
static constexpr int32_t kSizeTag = 1234567;
static constexpr int32_t kFlattenTag = 987654;
static constexpr int32_t kUnflattenTag = 5926582;
struct LightFlattenableAndTriviallyCopyable
: LightFlattenable<LightFlattenableAndTriviallyCopyable> {
int32_t value;
bool isFixedSize() const { return true; }
size_t getFlattenedSize() const { return kSizeTag; }
status_t flatten(void* buffer, size_t size) const {
FlattenableUtils::write(buffer, size, kFlattenTag);
return OK;
}
status_t unflatten(void const*, size_t) {
value = kUnflattenTag;
return OK;
}
};
{
// Verify that getFlattenedSize uses the LightFlattenable overload
LightFlattenableAndTriviallyCopyable foo;
EXPECT_EQ(kSizeTag, FlattenableHelpers::getFlattenedSize(foo));
}
{
// Verify that flatten uses the LightFlattenable overload
std::vector<int8_t> buffer(sizeof(int32_t));
auto rawBuffer = reinterpret_cast<void*>(buffer.data());
size_t size = buffer.size();
LightFlattenableAndTriviallyCopyable foo;
ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, foo));
auto rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
int32_t value;
FlattenableHelpers::unflatten(&rawReadBuffer, &size, &value);
EXPECT_EQ(kFlattenTag, value);
}
{
// Verify that unflatten uses the LightFlattenable overload
std::vector<int8_t> buffer(sizeof(int32_t));
auto rawBuffer = reinterpret_cast<void*>(buffer.data());
size_t size = buffer.size();
int32_t value = 4;
ASSERT_EQ(OK, FlattenableHelpers::flatten(&rawBuffer, &size, value));
auto rawReadBuffer = reinterpret_cast<const void*>(buffer.data());
LightFlattenableAndTriviallyCopyable foo;
FlattenableHelpers::unflatten(&rawReadBuffer, &size, &foo);
EXPECT_EQ(kUnflattenTag, foo.value);
}
}
} // namespace
} // namespace android
|