1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "HidlSensorHalWrapper.h"
#include "android/hardware/sensors/2.0/types.h"
#include "android/hardware/sensors/2.1/ISensorsCallback.h"
#include "android/hardware/sensors/2.1/types.h"
#include "convertV2_1.h"
#include <android-base/logging.h>
using android::hardware::hidl_vec;
using android::hardware::sensors::V1_0::RateLevel;
using android::hardware::sensors::V1_0::Result;
using android::hardware::sensors::V1_0::SharedMemFormat;
using android::hardware::sensors::V1_0::SharedMemInfo;
using android::hardware::sensors::V1_0::SharedMemType;
using android::hardware::sensors::V2_0::EventQueueFlagBits;
using android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
using android::hardware::sensors::V2_1::Event;
using android::hardware::sensors::V2_1::ISensorsCallback;
using android::hardware::sensors::V2_1::implementation::convertFromSensorEvent;
using android::hardware::sensors::V2_1::implementation::convertToNewEvents;
using android::hardware::sensors::V2_1::implementation::convertToNewSensorInfos;
using android::hardware::sensors::V2_1::implementation::convertToSensor;
using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV1_0;
using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV2_0;
using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV2_1;
namespace android {
namespace {
status_t statusFromResult(Result result) {
switch (result) {
case Result::OK:
return OK;
case Result::BAD_VALUE:
return BAD_VALUE;
case Result::PERMISSION_DENIED:
return PERMISSION_DENIED;
case Result::INVALID_OPERATION:
return INVALID_OPERATION;
case Result::NO_MEMORY:
return NO_MEMORY;
}
}
template <typename EnumType>
constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
return static_cast<typename std::underlying_type<EnumType>::type>(value);
}
enum EventQueueFlagBitsInternal : uint32_t {
INTERNAL_WAKE = 1 << 16,
};
} // anonymous namespace
void SensorsHalDeathReceiver::serviceDied(
uint64_t /* cookie */, const wp<::android::hidl::base::V1_0::IBase>& /* service */) {
ALOGW("Sensors HAL died, attempting to reconnect.");
mHidlSensorHalWrapper->prepareForReconnect();
}
struct HidlSensorsCallback : public ISensorsCallback {
using Result = ::android::hardware::sensors::V1_0::Result;
using SensorInfo = ::android::hardware::sensors::V2_1::SensorInfo;
HidlSensorsCallback(ISensorHalWrapper::SensorDeviceCallback* sensorDeviceCallback) {
mSensorDeviceCallback = sensorDeviceCallback;
}
Return<void> onDynamicSensorsConnected_2_1(
const hidl_vec<SensorInfo>& dynamicSensorsAdded) override {
std::vector<sensor_t> sensors;
for (const android::hardware::sensors::V2_1::SensorInfo& info : dynamicSensorsAdded) {
sensor_t sensor;
convertToSensor(info, &sensor);
sensors.push_back(sensor);
}
mSensorDeviceCallback->onDynamicSensorsConnected(sensors);
return Return<void>();
}
Return<void> onDynamicSensorsConnected(
const hidl_vec<android::hardware::sensors::V1_0::SensorInfo>& dynamicSensorsAdded)
override {
return onDynamicSensorsConnected_2_1(convertToNewSensorInfos(dynamicSensorsAdded));
}
Return<void> onDynamicSensorsDisconnected(
const hidl_vec<int32_t>& dynamicSensorHandlesRemoved) override {
mSensorDeviceCallback->onDynamicSensorsDisconnected(dynamicSensorHandlesRemoved);
return Return<void>();
}
private:
ISensorHalWrapper::SensorDeviceCallback* mSensorDeviceCallback;
};
bool HidlSensorHalWrapper::supportsPolling() {
return mSensors->supportsPolling();
}
bool HidlSensorHalWrapper::supportsMessageQueues() {
return mSensors->supportsMessageQueues();
}
bool HidlSensorHalWrapper::connect(SensorDeviceCallback* callback) {
mSensorDeviceCallback = callback;
bool ret = connectHidlService();
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
}
return ret;
}
void HidlSensorHalWrapper::prepareForReconnect() {
mReconnecting = true;
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
}
}
ssize_t HidlSensorHalWrapper::poll(sensors_event_t* buffer, size_t count) {
ssize_t err;
int numHidlTransportErrors = 0;
bool hidlTransportError = false;
do {
auto ret = mSensors->poll(count,
[&](auto result, const auto& events,
const auto& dynamicSensorsAdded) {
if (result == Result::OK) {
convertToSensorEvents(convertToNewEvents(events),
convertToNewSensorInfos(
dynamicSensorsAdded),
buffer);
err = (ssize_t)events.size();
} else {
err = statusFromResult(result);
}
});
if (ret.isOk()) {
hidlTransportError = false;
} else {
hidlTransportError = true;
numHidlTransportErrors++;
if (numHidlTransportErrors > 50) {
// Log error and bail
ALOGE("Max Hidl transport errors this cycle : %d", numHidlTransportErrors);
handleHidlDeath(ret.description());
} else {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
} while (hidlTransportError);
if (numHidlTransportErrors > 0) {
ALOGE("Saw %d Hidl transport failures", numHidlTransportErrors);
HidlTransportErrorLog errLog(time(nullptr), numHidlTransportErrors);
mHidlTransportErrors.add(errLog);
mTotalHidlTransportErrors++;
}
return err;
}
ssize_t HidlSensorHalWrapper::pollFmq(sensors_event_t* buffer, size_t maxNumEventsToRead) {
ssize_t eventsRead = 0;
size_t availableEvents = mSensors->getEventQueue()->availableToRead();
if (availableEvents == 0) {
uint32_t eventFlagState = 0;
// Wait for events to become available. This is necessary so that the Event FMQ's read() is
// able to be called with the correct number of events to read. If the specified number of
// events is not available, then read() would return no events, possibly introducing
// additional latency in delivering events to applications.
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wait(asBaseType(EventQueueFlagBits::READ_AND_PROCESS) |
asBaseType(INTERNAL_WAKE),
&eventFlagState);
}
availableEvents = mSensors->getEventQueue()->availableToRead();
if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
ALOGD("Event FMQ internal wake, returning from poll with no events");
return DEAD_OBJECT;
}
}
size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
if (eventsToRead > 0) {
if (mSensors->getEventQueue()->read(mEventBuffer.data(), eventsToRead)) {
// Notify the Sensors HAL that sensor events have been read. This is required to support
// the use of writeBlocking by the Sensors HAL.
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wake(asBaseType(EventQueueFlagBits::EVENTS_READ));
}
for (size_t i = 0; i < eventsToRead; i++) {
convertToSensorEvent(mEventBuffer[i], &buffer[i]);
}
eventsRead = eventsToRead;
} else {
ALOGW("Failed to read %zu events, currently %zu events available", eventsToRead,
availableEvents);
}
}
return eventsRead;
}
std::vector<sensor_t> HidlSensorHalWrapper::getSensorsList() {
std::vector<sensor_t> sensorsFound;
if (mSensors != nullptr) {
checkReturn(mSensors->getSensorsList([&](const auto& list) {
for (size_t i = 0; i < list.size(); i++) {
sensor_t sensor;
convertToSensor(list[i], &sensor);
sensorsFound.push_back(sensor);
// Only disable all sensors on HAL 1.0 since HAL 2.0
// handles this in its initialize method
if (!mSensors->supportsMessageQueues()) {
checkReturn(mSensors->activate(list[i].sensorHandle, 0 /* enabled */));
}
}
}));
}
return sensorsFound;
}
status_t HidlSensorHalWrapper::setOperationMode(SensorService::Mode mode) {
if (mSensors == nullptr) return NO_INIT;
return checkReturnAndGetStatus(
mSensors->setOperationMode(static_cast<hardware::sensors::V1_0::OperationMode>(mode)));
}
status_t HidlSensorHalWrapper::activate(int32_t sensorHandle, bool enabled) {
if (mSensors == nullptr) return NO_INIT;
return checkReturnAndGetStatus(mSensors->activate(sensorHandle, enabled));
}
status_t HidlSensorHalWrapper::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
int64_t maxReportLatencyNs) {
if (mSensors == nullptr) return NO_INIT;
return checkReturnAndGetStatus(
mSensors->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs));
}
status_t HidlSensorHalWrapper::flush(int32_t sensorHandle) {
if (mSensors == nullptr) return NO_INIT;
return checkReturnAndGetStatus(mSensors->flush(sensorHandle));
}
status_t HidlSensorHalWrapper::injectSensorData(const sensors_event_t* event) {
if (mSensors == nullptr) return NO_INIT;
Event ev;
convertFromSensorEvent(*event, &ev);
return checkReturnAndGetStatus(mSensors->injectSensorData(ev));
}
status_t HidlSensorHalWrapper::registerDirectChannel(const sensors_direct_mem_t* memory,
int32_t* outChannelHandle) {
if (mSensors == nullptr) return NO_INIT;
SharedMemType type;
switch (memory->type) {
case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
type = SharedMemType::ASHMEM;
break;
case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
type = SharedMemType::GRALLOC;
break;
default:
return BAD_VALUE;
}
SharedMemFormat format;
if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
return BAD_VALUE;
}
format = SharedMemFormat::SENSORS_EVENT;
SharedMemInfo mem = {
.type = type,
.format = format,
.size = static_cast<uint32_t>(memory->size),
.memoryHandle = memory->handle,
};
status_t ret = OK;
checkReturn(mSensors->registerDirectChannel(mem,
[&ret, &outChannelHandle](auto result,
auto channelHandle) {
if (result == Result::OK) {
*outChannelHandle = channelHandle;
} else {
ret = statusFromResult(result);
}
}));
return ret;
}
status_t HidlSensorHalWrapper::unregisterDirectChannel(int32_t channelHandle) {
if (mSensors == nullptr) return NO_INIT;
return checkReturnAndGetStatus(mSensors->unregisterDirectChannel(channelHandle));
}
status_t HidlSensorHalWrapper::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
const struct sensors_direct_cfg_t* config) {
if (mSensors == nullptr) return NO_INIT;
RateLevel rate;
switch (config->rate_level) {
case SENSOR_DIRECT_RATE_STOP:
rate = RateLevel::STOP;
break;
case SENSOR_DIRECT_RATE_NORMAL:
rate = RateLevel::NORMAL;
break;
case SENSOR_DIRECT_RATE_FAST:
rate = RateLevel::FAST;
break;
case SENSOR_DIRECT_RATE_VERY_FAST:
rate = RateLevel::VERY_FAST;
break;
default:
return BAD_VALUE;
}
status_t ret;
checkReturn(mSensors->configDirectReport(sensorHandle, channelHandle, rate,
[&ret, rate](auto result, auto token) {
if (rate == RateLevel::STOP) {
ret = statusFromResult(result);
} else {
if (result == Result::OK) {
ret = token;
} else {
ret = statusFromResult(result);
}
}
}));
return ret;
}
void HidlSensorHalWrapper::writeWakeLockHandled(uint32_t count) {
if (mWakeLockQueue->write(&count)) {
mWakeLockQueueFlag->wake(asBaseType(WakeLockQueueFlagBits::DATA_WRITTEN));
} else {
ALOGW("Failed to write wake lock handled");
}
}
status_t HidlSensorHalWrapper::checkReturnAndGetStatus(const hardware::Return<Result>& ret) {
checkReturn(ret);
return (!ret.isOk()) ? DEAD_OBJECT : statusFromResult(ret);
}
void HidlSensorHalWrapper::handleHidlDeath(const std::string& detail) {
if (!mSensors->supportsMessageQueues()) {
// restart is the only option at present.
LOG_ALWAYS_FATAL("Abort due to ISensors hidl service failure, detail: %s.", detail.c_str());
} else {
ALOGD("ISensors HAL died, death recipient will attempt reconnect");
}
}
bool HidlSensorHalWrapper::connectHidlService() {
HalConnectionStatus status = connectHidlServiceV2_1();
if (status == HalConnectionStatus::DOES_NOT_EXIST) {
status = connectHidlServiceV2_0();
}
if (status == HalConnectionStatus::DOES_NOT_EXIST) {
status = connectHidlServiceV1_0();
}
return (status == HalConnectionStatus::CONNECTED);
}
ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::connectHidlServiceV1_0() {
// SensorDevice will wait for HAL service to start if HAL is declared in device manifest.
size_t retry = 10;
HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
while (retry-- > 0) {
sp<android::hardware::sensors::V1_0::ISensors> sensors =
android::hardware::sensors::V1_0::ISensors::getService();
if (sensors == nullptr) {
// no sensor hidl service found
connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
break;
}
mSensors = new ISensorsWrapperV1_0(sensors);
mRestartWaiter->reset();
// Poke ISensor service. If it has lingering connection from previous generation of
// system server, it will kill itself. There is no intention to handle the poll result,
// which will be done since the size is 0.
if (mSensors->poll(0, [](auto, const auto&, const auto&) {}).isOk()) {
// ok to continue
connectionStatus = HalConnectionStatus::CONNECTED;
break;
}
// hidl service is restarting, pointer is invalid.
mSensors = nullptr;
connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
ALOGI("%s unsuccessful, remaining retry %zu.", __FUNCTION__, retry);
mRestartWaiter->wait();
}
return connectionStatus;
}
ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::connectHidlServiceV2_0() {
HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
sp<android::hardware::sensors::V2_0::ISensors> sensors =
android::hardware::sensors::V2_0::ISensors::getService();
if (sensors == nullptr) {
connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
} else {
mSensors = new ISensorsWrapperV2_0(sensors);
connectionStatus = initializeHidlServiceV2_X();
}
return connectionStatus;
}
ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::connectHidlServiceV2_1() {
HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
sp<android::hardware::sensors::V2_1::ISensors> sensors =
android::hardware::sensors::V2_1::ISensors::getService();
if (sensors == nullptr) {
connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
} else {
mSensors = new ISensorsWrapperV2_1(sensors);
connectionStatus = initializeHidlServiceV2_X();
}
return connectionStatus;
}
ISensorHalWrapper::HalConnectionStatus HidlSensorHalWrapper::initializeHidlServiceV2_X() {
HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
mWakeLockQueue =
std::make_unique<WakeLockQueue>(SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT,
true /* configureEventFlagWord */);
hardware::EventFlag::deleteEventFlag(&mEventQueueFlag);
hardware::EventFlag::createEventFlag(mSensors->getEventQueue()->getEventFlagWord(),
&mEventQueueFlag);
hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
hardware::EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakeLockQueueFlag);
CHECK(mSensors != nullptr && mWakeLockQueue != nullptr && mEventQueueFlag != nullptr &&
mWakeLockQueueFlag != nullptr);
mCallback = sp<HidlSensorsCallback>::make(mSensorDeviceCallback);
status_t status =
checkReturnAndGetStatus(mSensors->initialize(*mWakeLockQueue->getDesc(), mCallback));
if (status != NO_ERROR) {
connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
ALOGE("Failed to initialize Sensors HAL (%s)", strerror(-status));
} else {
connectionStatus = HalConnectionStatus::CONNECTED;
mSensorsHalDeathReceiver = new SensorsHalDeathReceiver(this);
mSensors->linkToDeath(mSensorsHalDeathReceiver, 0 /* cookie */);
}
return connectionStatus;
}
void HidlSensorHalWrapper::convertToSensorEvent(const Event& src, sensors_event_t* dst) {
android::hardware::sensors::V2_1::implementation::convertToSensorEvent(src, dst);
}
void HidlSensorHalWrapper::convertToSensorEvents(const hidl_vec<Event>& src,
const hidl_vec<SensorInfo>& dynamicSensorsAdded,
sensors_event_t* dst) {
if (dynamicSensorsAdded.size() > 0 && mCallback != nullptr) {
mCallback->onDynamicSensorsConnected_2_1(dynamicSensorsAdded);
}
for (size_t i = 0; i < src.size(); ++i) {
convertToSensorEvent(src[i], &dst[i]);
}
}
} // namespace android
|