1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
|
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SensorDevice.h"
#include "android/hardware/sensors/2.0/types.h"
#include "android/hardware/sensors/2.1/types.h"
#include "convertV2_1.h"
#include "AidlSensorHalWrapper.h"
#include "HidlSensorHalWrapper.h"
#include <android-base/logging.h>
#include <android/util/ProtoOutputStream.h>
#include <cutils/atomic.h>
#include <frameworks/base/core/proto/android/service/sensor_service.proto.h>
#include <hardware/sensors-base.h>
#include <hardware/sensors.h>
#include <sensors/convert.h>
#include <utils/Errors.h>
#include <utils/Singleton.h>
#include <chrono>
#include <cinttypes>
#include <cstddef>
#include <thread>
using namespace android::hardware::sensors;
using android::hardware::Return;
using android::util::ProtoOutputStream;
namespace android {
// ---------------------------------------------------------------------------
ANDROID_SINGLETON_STATIC_INSTANCE(SensorDevice)
namespace {
template <typename EnumType>
constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
return static_cast<typename std::underlying_type<EnumType>::type>(value);
}
// Used internally by the framework to wake the Event FMQ. These values must start after
// the last value of EventQueueFlagBits
enum EventQueueFlagBitsInternal : uint32_t {
INTERNAL_WAKE = 1 << 16,
};
enum DevicePrivateBase : int32_t {
DEVICE_PRIVATE_BASE = 65536,
};
} // anonymous namespace
SensorDevice::SensorDevice() {
if (!connectHalService()) {
return;
}
initializeSensorList();
mIsDirectReportSupported = (mHalWrapper->unregisterDirectChannel(-1) != INVALID_OPERATION);
}
void SensorDevice::initializeSensorList() {
if (mHalWrapper == nullptr) {
return;
}
auto list = mHalWrapper->getSensorsList();
const size_t count = list.size();
mActivationCount.setCapacity(count);
Info model;
for (size_t i = 0; i < count; i++) {
sensor_t sensor = list[i];
if (sensor.type < DEVICE_PRIVATE_BASE) {
sensor.resolution = SensorDeviceUtils::resolutionForSensor(sensor);
// Some sensors don't have a default resolution and will be left at 0.
// Don't crash in this case since CTS will verify that devices don't go to
// production with a resolution of 0.
if (sensor.resolution != 0) {
float quantizedRange = sensor.maxRange;
SensorDeviceUtils::quantizeValue(&quantizedRange, sensor.resolution,
/*factor=*/1);
// Only rewrite maxRange if the requantization produced a "significant"
// change, which is fairly arbitrarily defined as resolution / 8.
// Smaller deltas are permitted, as they may simply be due to floating
// point representation error, etc.
if (fabsf(sensor.maxRange - quantizedRange) > sensor.resolution / 8) {
ALOGW("%s's max range %.12f is not a multiple of the resolution "
"%.12f - updated to %.12f",
sensor.name, sensor.maxRange, sensor.resolution, quantizedRange);
sensor.maxRange = quantizedRange;
}
} else {
// Don't crash here or the device will go into a crashloop.
ALOGW("%s should have a non-zero resolution", sensor.name);
}
}
// Check and clamp power if it is 0 (or close)
constexpr float MIN_POWER_MA = 0.001; // 1 microAmp
if (sensor.power < MIN_POWER_MA) {
ALOGI("%s's reported power %f invalid, clamped to %f", sensor.name, sensor.power,
MIN_POWER_MA);
sensor.power = MIN_POWER_MA;
}
mSensorList.push_back(sensor);
mActivationCount.add(list[i].handle, model);
// Only disable all sensors on HAL 1.0 since HAL 2.0
// handles this in its initialize method
if (!mHalWrapper->supportsMessageQueues()) {
mHalWrapper->activate(list[i].handle, 0 /* enabled */);
}
}
}
SensorDevice::~SensorDevice() {}
bool SensorDevice::connectHalService() {
std::unique_ptr<ISensorHalWrapper> aidl_wrapper = std::make_unique<AidlSensorHalWrapper>();
if (aidl_wrapper->connect(this)) {
mHalWrapper = std::move(aidl_wrapper);
return true;
}
std::unique_ptr<ISensorHalWrapper> hidl_wrapper = std::make_unique<HidlSensorHalWrapper>();
if (hidl_wrapper->connect(this)) {
mHalWrapper = std::move(hidl_wrapper);
return true;
}
// TODO: check aidl connection;
return false;
}
void SensorDevice::prepareForReconnect() {
mHalWrapper->prepareForReconnect();
}
void SensorDevice::reconnect() {
Mutex::Autolock _l(mLock);
auto previousActivations = mActivationCount;
auto previousSensorList = mSensorList;
mActivationCount.clear();
mSensorList.clear();
if (mHalWrapper->connect(this)) {
initializeSensorList();
if (sensorHandlesChanged(previousSensorList, mSensorList)) {
LOG_ALWAYS_FATAL("Sensor handles changed, cannot re-enable sensors.");
} else {
reactivateSensors(previousActivations);
}
}
mHalWrapper->mReconnecting = false;
}
bool SensorDevice::sensorHandlesChanged(const std::vector<sensor_t>& oldSensorList,
const std::vector<sensor_t>& newSensorList) {
bool didChange = false;
if (oldSensorList.size() != newSensorList.size()) {
ALOGI("Sensor list size changed from %zu to %zu", oldSensorList.size(),
newSensorList.size());
didChange = true;
}
for (size_t i = 0; i < newSensorList.size() && !didChange; i++) {
bool found = false;
const sensor_t& newSensor = newSensorList[i];
for (size_t j = 0; j < oldSensorList.size() && !found; j++) {
const sensor_t& prevSensor = oldSensorList[j];
if (prevSensor.handle == newSensor.handle) {
found = true;
if (!sensorIsEquivalent(prevSensor, newSensor)) {
ALOGI("Sensor %s not equivalent to previous version", newSensor.name);
didChange = true;
}
}
}
if (!found) {
// Could not find the new sensor in the old list of sensors, the lists must
// have changed.
ALOGI("Sensor %s (handle %d) did not exist before", newSensor.name, newSensor.handle);
didChange = true;
}
}
return didChange;
}
bool SensorDevice::sensorIsEquivalent(const sensor_t& prevSensor, const sensor_t& newSensor) {
bool equivalent = true;
if (prevSensor.handle != newSensor.handle ||
(strcmp(prevSensor.vendor, newSensor.vendor) != 0) ||
(strcmp(prevSensor.stringType, newSensor.stringType) != 0) ||
(strcmp(prevSensor.requiredPermission, newSensor.requiredPermission) != 0) ||
(prevSensor.version != newSensor.version) || (prevSensor.type != newSensor.type) ||
(std::abs(prevSensor.maxRange - newSensor.maxRange) > 0.001f) ||
(std::abs(prevSensor.resolution - newSensor.resolution) > 0.001f) ||
(std::abs(prevSensor.power - newSensor.power) > 0.001f) ||
(prevSensor.minDelay != newSensor.minDelay) ||
(prevSensor.fifoReservedEventCount != newSensor.fifoReservedEventCount) ||
(prevSensor.fifoMaxEventCount != newSensor.fifoMaxEventCount) ||
(prevSensor.maxDelay != newSensor.maxDelay) || (prevSensor.flags != newSensor.flags)) {
equivalent = false;
}
return equivalent;
}
void SensorDevice::reactivateSensors(const DefaultKeyedVector<int, Info>& previousActivations) {
for (size_t i = 0; i < mSensorList.size(); i++) {
int handle = mSensorList[i].handle;
ssize_t activationIndex = previousActivations.indexOfKey(handle);
if (activationIndex < 0 || previousActivations[activationIndex].numActiveClients() <= 0) {
continue;
}
const Info& info = previousActivations[activationIndex];
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& batchParams = info.batchParams[j];
status_t res = batchLocked(info.batchParams.keyAt(j), handle, 0 /* flags */,
batchParams.mTSample, batchParams.mTBatch);
if (res == NO_ERROR) {
activateLocked(info.batchParams.keyAt(j), handle, true /* enabled */);
}
}
}
}
void SensorDevice::handleDynamicSensorConnection(int handle, bool connected) {
// not need to check mSensors because this is is only called after successful poll()
if (connected) {
Info model;
mActivationCount.add(handle, model);
mHalWrapper->activate(handle, 0 /* enabled */);
} else {
mActivationCount.removeItem(handle);
}
}
std::string SensorDevice::dump() const {
if (mHalWrapper == nullptr) return "HAL not initialized\n";
String8 result;
result.appendFormat("Total %zu h/w sensors, %zu running %zu disabled clients:\n",
mSensorList.size(), mActivationCount.size(), mDisabledClients.size());
Mutex::Autolock _l(mLock);
for (const auto& s : mSensorList) {
int32_t handle = s.handle;
const Info& info = mActivationCount.valueFor(handle);
if (info.numActiveClients() == 0) continue;
result.appendFormat("0x%08x) active-count = %zu; ", handle, info.batchParams.size());
result.append("sampling_period(ms) = {");
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& params = info.batchParams[j];
result.appendFormat("%.1f%s%s", params.mTSample / 1e6f,
isClientDisabledLocked(info.batchParams.keyAt(j)) ? "(disabled)"
: "",
(j < info.batchParams.size() - 1) ? ", " : "");
}
result.appendFormat("}, selected = %.2f ms; ", info.bestBatchParams.mTSample / 1e6f);
result.append("batching_period(ms) = {");
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& params = info.batchParams[j];
result.appendFormat("%.1f%s%s", params.mTBatch / 1e6f,
isClientDisabledLocked(info.batchParams.keyAt(j)) ? "(disabled)"
: "",
(j < info.batchParams.size() - 1) ? ", " : "");
}
result.appendFormat("}, selected = %.2f ms\n", info.bestBatchParams.mTBatch / 1e6f);
}
return result.c_str();
}
/**
* Dump debugging information as android.service.SensorDeviceProto protobuf message using
* ProtoOutputStream.
*
* See proto definition and some notes about ProtoOutputStream in
* frameworks/base/core/proto/android/service/sensor_service.proto
*/
void SensorDevice::dump(ProtoOutputStream* proto) const {
using namespace service::SensorDeviceProto;
if (mHalWrapper == nullptr) {
proto->write(INITIALIZED, false);
return;
}
proto->write(INITIALIZED, true);
proto->write(TOTAL_SENSORS, int(mSensorList.size()));
proto->write(ACTIVE_SENSORS, int(mActivationCount.size()));
Mutex::Autolock _l(mLock);
for (const auto& s : mSensorList) {
int32_t handle = s.handle;
const Info& info = mActivationCount.valueFor(handle);
if (info.numActiveClients() == 0) continue;
uint64_t token = proto->start(SENSORS);
proto->write(SensorProto::HANDLE, handle);
proto->write(SensorProto::ACTIVE_COUNT, int(info.batchParams.size()));
for (size_t j = 0; j < info.batchParams.size(); j++) {
const BatchParams& params = info.batchParams[j];
proto->write(SensorProto::SAMPLING_PERIOD_MS, params.mTSample / 1e6f);
proto->write(SensorProto::BATCHING_PERIOD_MS, params.mTBatch / 1e6f);
}
proto->write(SensorProto::SAMPLING_PERIOD_SELECTED, info.bestBatchParams.mTSample / 1e6f);
proto->write(SensorProto::BATCHING_PERIOD_SELECTED, info.bestBatchParams.mTBatch / 1e6f);
proto->end(token);
}
}
ssize_t SensorDevice::getSensorList(sensor_t const** list) {
*list = &mSensorList[0];
return mSensorList.size();
}
status_t SensorDevice::initCheck() const {
return mHalWrapper != nullptr ? NO_ERROR : NO_INIT;
}
ssize_t SensorDevice::poll(sensors_event_t* buffer, size_t count) {
if (mHalWrapper == nullptr) return NO_INIT;
ssize_t eventsRead = 0;
if (mHalWrapper->supportsMessageQueues()) {
eventsRead = mHalWrapper->pollFmq(buffer, count);
} else if (mHalWrapper->supportsPolling()) {
eventsRead = mHalWrapper->poll(buffer, count);
} else {
ALOGE("Must support polling or FMQ");
eventsRead = -1;
}
if (eventsRead > 0) {
for (ssize_t i = 0; i < eventsRead; i++) {
float resolution = getResolutionForSensor(buffer[i].sensor);
android::SensorDeviceUtils::quantizeSensorEventValues(&buffer[i], resolution);
if (buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
struct dynamic_sensor_meta_event& dyn = buffer[i].dynamic_sensor_meta;
if (dyn.connected) {
std::unique_lock<std::mutex> lock(mDynamicSensorsMutex);
// Give MAX_DYN_SENSOR_WAIT_SEC for onDynamicSensorsConnected to be invoked
// since it can be received out of order from this event due to a bug in the
// HIDL spec that marks it as oneway.
auto it = mConnectedDynamicSensors.find(dyn.handle);
if (it == mConnectedDynamicSensors.end()) {
mDynamicSensorsCv.wait_for(lock, MAX_DYN_SENSOR_WAIT, [&, dyn] {
return mConnectedDynamicSensors.find(dyn.handle) !=
mConnectedDynamicSensors.end();
});
it = mConnectedDynamicSensors.find(dyn.handle);
CHECK(it != mConnectedDynamicSensors.end());
}
dyn.sensor = &it->second;
}
}
}
}
return eventsRead;
}
void SensorDevice::onDynamicSensorsConnected(const std::vector<sensor_t>& dynamicSensorsAdded) {
std::unique_lock<std::mutex> lock(mDynamicSensorsMutex);
// Allocate a sensor_t structure for each dynamic sensor added and insert
// it into the dictionary of connected dynamic sensors keyed by handle.
for (size_t i = 0; i < dynamicSensorsAdded.size(); ++i) {
const sensor_t& sensor = dynamicSensorsAdded[i];
auto it = mConnectedDynamicSensors.find(sensor.handle);
CHECK(it == mConnectedDynamicSensors.end());
mConnectedDynamicSensors.insert(std::make_pair(sensor.handle, sensor));
}
mDynamicSensorsCv.notify_all();
}
void SensorDevice::onDynamicSensorsDisconnected(
const std::vector<int32_t>& /* dynamicSensorHandlesRemoved */) {
// TODO: Currently dynamic sensors do not seem to be removed
}
void SensorDevice::writeWakeLockHandled(uint32_t count) {
if (mHalWrapper != nullptr && mHalWrapper->supportsMessageQueues()) {
mHalWrapper->writeWakeLockHandled(count);
}
}
void SensorDevice::autoDisable(void* ident, int handle) {
Mutex::Autolock _l(mLock);
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
ALOGW("Handle %d cannot be found in activation record", handle);
return;
}
Info& info(mActivationCount.editValueAt(activationIndex));
info.removeBatchParamsForIdent(ident);
if (info.numActiveClients() == 0) {
info.isActive = false;
}
}
status_t SensorDevice::activate(void* ident, int handle, int enabled) {
if (mHalWrapper == nullptr) return NO_INIT;
Mutex::Autolock _l(mLock);
return activateLocked(ident, handle, enabled);
}
status_t SensorDevice::activateLocked(void* ident, int handle, int enabled) {
bool activateHardware = false;
status_t err(NO_ERROR);
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
ALOGW("Handle %d cannot be found in activation record", handle);
return BAD_VALUE;
}
Info& info(mActivationCount.editValueAt(activationIndex));
ALOGD_IF(DEBUG_CONNECTIONS,
"SensorDevice::activate: ident=%p, handle=0x%08x, enabled=%d, count=%zu", ident,
handle, enabled, info.batchParams.size());
if (enabled) {
ALOGD_IF(DEBUG_CONNECTIONS, "enable index=%zd", info.batchParams.indexOfKey(ident));
if (isClientDisabledLocked(ident)) {
ALOGW("SensorDevice::activate, isClientDisabledLocked(%p):true, handle:%d", ident,
handle);
return NO_ERROR;
}
if (info.batchParams.indexOfKey(ident) >= 0) {
if (info.numActiveClients() > 0 && !info.isActive) {
activateHardware = true;
}
} else {
// Log error. Every activate call should be preceded by a batch() call.
ALOGE("\t >>>ERROR: activate called without batch");
}
} else {
ALOGD_IF(DEBUG_CONNECTIONS, "disable index=%zd", info.batchParams.indexOfKey(ident));
// If a connected dynamic sensor is deactivated, remove it from the
// dictionary.
auto it = mConnectedDynamicSensors.find(handle);
if (it != mConnectedDynamicSensors.end()) {
mConnectedDynamicSensors.erase(it);
}
if (info.removeBatchParamsForIdent(ident) >= 0) {
if (info.numActiveClients() == 0) {
// This is the last connection, we need to de-activate the underlying h/w sensor.
activateHardware = true;
} else {
// Call batch for this sensor with the previously calculated best effort
// batch_rate and timeout. One of the apps has unregistered for sensor
// events, and the best effort batch parameters might have changed.
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w batch 0x%08x %" PRId64 " %" PRId64,
handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
mHalWrapper->batch(handle, info.bestBatchParams.mTSample,
info.bestBatchParams.mTBatch);
}
} else {
// sensor wasn't enabled for this ident
}
if (isClientDisabledLocked(ident)) {
return NO_ERROR;
}
}
if (activateHardware) {
err = doActivateHardwareLocked(handle, enabled);
if (err != NO_ERROR && enabled) {
// Failure when enabling the sensor. Clean up on failure.
info.removeBatchParamsForIdent(ident);
} else {
// Update the isActive flag if there is no error. If there is an error when disabling a
// sensor, still set the flag to false since the batch parameters have already been
// removed. This ensures that everything remains in-sync.
info.isActive = enabled;
}
}
return err;
}
status_t SensorDevice::doActivateHardwareLocked(int handle, bool enabled) {
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w activate handle=%d enabled=%d", handle,
enabled);
status_t err = mHalWrapper->activate(handle, enabled);
ALOGE_IF(err, "Error %s sensor %d (%s)", enabled ? "activating" : "disabling", handle,
strerror(-err));
return err;
}
status_t SensorDevice::batch(void* ident, int handle, int flags, int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs) {
if (mHalWrapper == nullptr) return NO_INIT;
if (samplingPeriodNs < MINIMUM_EVENTS_PERIOD) {
samplingPeriodNs = MINIMUM_EVENTS_PERIOD;
}
if (maxBatchReportLatencyNs < 0) {
maxBatchReportLatencyNs = 0;
}
ALOGD_IF(DEBUG_CONNECTIONS,
"SensorDevice::batch: ident=%p, handle=0x%08x, flags=%d, period_ns=%" PRId64
" timeout=%" PRId64,
ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);
Mutex::Autolock _l(mLock);
return batchLocked(ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);
}
status_t SensorDevice::batchLocked(void* ident, int handle, int flags, int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs) {
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
ALOGW("Handle %d cannot be found in activation record", handle);
return BAD_VALUE;
}
Info& info(mActivationCount.editValueAt(activationIndex));
if (info.batchParams.indexOfKey(ident) < 0) {
BatchParams params(samplingPeriodNs, maxBatchReportLatencyNs);
info.batchParams.add(ident, params);
} else {
// A batch has already been called with this ident. Update the batch parameters.
info.setBatchParamsForIdent(ident, flags, samplingPeriodNs, maxBatchReportLatencyNs);
}
status_t err = updateBatchParamsLocked(handle, info);
if (err != NO_ERROR) {
ALOGE("sensor batch failed 0x%08x %" PRId64 " %" PRId64 " err=%s", handle,
info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch, strerror(-err));
info.removeBatchParamsForIdent(ident);
}
return err;
}
status_t SensorDevice::updateBatchParamsLocked(int handle, Info& info) {
BatchParams prevBestBatchParams = info.bestBatchParams;
// Find the minimum of all timeouts and batch_rates for this sensor.
info.selectBatchParams();
ALOGD_IF(DEBUG_CONNECTIONS,
"\t>>> curr_period=%" PRId64 " min_period=%" PRId64 " curr_timeout=%" PRId64
" min_timeout=%" PRId64,
prevBestBatchParams.mTSample, info.bestBatchParams.mTSample,
prevBestBatchParams.mTBatch, info.bestBatchParams.mTBatch);
status_t err(NO_ERROR);
// If the min period or min timeout has changed since the last batch call, call batch.
if (prevBestBatchParams != info.bestBatchParams && info.numActiveClients() > 0) {
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w BATCH 0x%08x %" PRId64 " %" PRId64, handle,
info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
err = mHalWrapper->batch(handle, info.bestBatchParams.mTSample,
info.bestBatchParams.mTBatch);
}
return err;
}
status_t SensorDevice::setDelay(void* ident, int handle, int64_t samplingPeriodNs) {
return batch(ident, handle, 0, samplingPeriodNs, 0);
}
int SensorDevice::getHalDeviceVersion() const {
if (mHalWrapper == nullptr) return -1;
return SENSORS_DEVICE_API_VERSION_1_4;
}
status_t SensorDevice::flush(void* ident, int handle) {
if (mHalWrapper == nullptr) return NO_INIT;
if (isClientDisabled(ident)) return INVALID_OPERATION;
ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w flush %d", handle);
return mHalWrapper->flush(handle);
}
bool SensorDevice::isClientDisabled(void* ident) const {
Mutex::Autolock _l(mLock);
return isClientDisabledLocked(ident);
}
bool SensorDevice::isClientDisabledLocked(void* ident) const {
return mDisabledClients.count(ident) > 0;
}
std::vector<void*> SensorDevice::getDisabledClientsLocked() const {
std::vector<void*> vec;
for (const auto& it : mDisabledClients) {
vec.push_back(it.first);
}
return vec;
}
void SensorDevice::addDisabledReasonForIdentLocked(void* ident, DisabledReason reason) {
mDisabledClients[ident] |= 1 << reason;
}
void SensorDevice::removeDisabledReasonForIdentLocked(void* ident, DisabledReason reason) {
if (isClientDisabledLocked(ident)) {
mDisabledClients[ident] &= ~(1 << reason);
if (mDisabledClients[ident] == 0) {
mDisabledClients.erase(ident);
}
}
}
void SensorDevice::setUidStateForConnection(void* ident, SensorService::UidState state) {
Mutex::Autolock _l(mLock);
if (state == SensorService::UID_STATE_ACTIVE) {
removeDisabledReasonForIdentLocked(ident, DisabledReason::DISABLED_REASON_UID_IDLE);
} else {
addDisabledReasonForIdentLocked(ident, DisabledReason::DISABLED_REASON_UID_IDLE);
}
for (size_t i = 0; i < mActivationCount.size(); ++i) {
int handle = mActivationCount.keyAt(i);
Info& info = mActivationCount.editValueAt(i);
if (info.hasBatchParamsForIdent(ident)) {
updateBatchParamsLocked(handle, info);
bool disable = info.numActiveClients() == 0 && info.isActive;
bool enable = info.numActiveClients() > 0 && !info.isActive;
if ((enable || disable) && doActivateHardwareLocked(handle, enable) == NO_ERROR) {
info.isActive = enable;
}
}
}
}
bool SensorDevice::isSensorActive(int handle) const {
Mutex::Autolock _l(mLock);
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
return false;
}
return mActivationCount.valueAt(activationIndex).isActive;
}
void SensorDevice::onMicSensorAccessChanged(void* ident, int handle, nsecs_t samplingPeriodNs) {
Mutex::Autolock _l(mLock);
ssize_t activationIndex = mActivationCount.indexOfKey(handle);
if (activationIndex < 0) {
ALOGW("Handle %d cannot be found in activation record", handle);
return;
}
Info& info(mActivationCount.editValueAt(activationIndex));
if (info.hasBatchParamsForIdent(ident)) {
ssize_t index = info.batchParams.indexOfKey(ident);
BatchParams& params = info.batchParams.editValueAt(index);
params.mTSample = samplingPeriodNs;
}
}
void SensorDevice::enableAllSensors() {
if (mHalWrapper == nullptr) return;
Mutex::Autolock _l(mLock);
for (void* client : getDisabledClientsLocked()) {
removeDisabledReasonForIdentLocked(client,
DisabledReason::DISABLED_REASON_SERVICE_RESTRICTED);
}
for (size_t i = 0; i < mActivationCount.size(); ++i) {
Info& info = mActivationCount.editValueAt(i);
if (info.batchParams.isEmpty()) continue;
info.selectBatchParams();
const int sensor_handle = mActivationCount.keyAt(i);
ALOGD_IF(DEBUG_CONNECTIONS, "\t>> reenable actuating h/w sensor enable handle=%d ",
sensor_handle);
status_t err = mHalWrapper->batch(sensor_handle, info.bestBatchParams.mTSample,
info.bestBatchParams.mTBatch);
ALOGE_IF(err, "Error calling batch on sensor %d (%s)", sensor_handle, strerror(-err));
if (err == NO_ERROR) {
err = mHalWrapper->activate(sensor_handle, 1 /* enabled */);
ALOGE_IF(err, "Error activating sensor %d (%s)", sensor_handle, strerror(-err));
}
if (err == NO_ERROR) {
info.isActive = true;
}
}
}
void SensorDevice::disableAllSensors() {
if (mHalWrapper == nullptr) return;
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mActivationCount.size(); ++i) {
Info& info = mActivationCount.editValueAt(i);
// Check if this sensor has been activated previously and disable it.
if (info.batchParams.size() > 0) {
const int sensor_handle = mActivationCount.keyAt(i);
ALOGD_IF(DEBUG_CONNECTIONS, "\t>> actuating h/w sensor disable handle=%d ",
sensor_handle);
mHalWrapper->activate(sensor_handle, 0 /* enabled */);
// Add all the connections that were registered for this sensor to the disabled
// clients list.
for (size_t j = 0; j < info.batchParams.size(); ++j) {
addDisabledReasonForIdentLocked(info.batchParams.keyAt(j),
DisabledReason::DISABLED_REASON_SERVICE_RESTRICTED);
ALOGI("added %p to mDisabledClients", info.batchParams.keyAt(j));
}
info.isActive = false;
}
}
}
status_t SensorDevice::injectSensorData(const sensors_event_t* injected_sensor_event) {
if (mHalWrapper == nullptr) return NO_INIT;
ALOGD_IF(DEBUG_CONNECTIONS,
"sensor_event handle=%d ts=%" PRId64 " data=%.2f, %.2f, %.2f %.2f %.2f %.2f",
injected_sensor_event->sensor, injected_sensor_event->timestamp,
injected_sensor_event->data[0], injected_sensor_event->data[1],
injected_sensor_event->data[2], injected_sensor_event->data[3],
injected_sensor_event->data[4], injected_sensor_event->data[5]);
return mHalWrapper->injectSensorData(injected_sensor_event);
}
status_t SensorDevice::setMode(uint32_t mode) {
if (mHalWrapper == nullptr) return NO_INIT;
return mHalWrapper->setOperationMode(static_cast<SensorService::Mode>(mode));
}
int32_t SensorDevice::registerDirectChannel(const sensors_direct_mem_t* memory) {
if (mHalWrapper == nullptr) return NO_INIT;
Mutex::Autolock _l(mLock);
int32_t channelHandle;
status_t status = mHalWrapper->registerDirectChannel(memory, &channelHandle);
if (status != OK) {
channelHandle = -1;
}
return channelHandle;
}
void SensorDevice::unregisterDirectChannel(int32_t channelHandle) {
mHalWrapper->unregisterDirectChannel(channelHandle);
}
int32_t SensorDevice::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
const struct sensors_direct_cfg_t* config) {
if (mHalWrapper == nullptr) return NO_INIT;
Mutex::Autolock _l(mLock);
return mHalWrapper->configureDirectChannel(sensorHandle, channelHandle, config);
}
// ---------------------------------------------------------------------------
int SensorDevice::Info::numActiveClients() const {
SensorDevice& device(SensorDevice::getInstance());
int num = 0;
for (size_t i = 0; i < batchParams.size(); ++i) {
if (!device.isClientDisabledLocked(batchParams.keyAt(i))) {
++num;
}
}
return num;
}
status_t SensorDevice::Info::setBatchParamsForIdent(void* ident, int, int64_t samplingPeriodNs,
int64_t maxBatchReportLatencyNs) {
ssize_t index = batchParams.indexOfKey(ident);
if (index < 0) {
ALOGE("Info::setBatchParamsForIdent(ident=%p, period_ns=%" PRId64 " timeout=%" PRId64
") failed (%s)",
ident, samplingPeriodNs, maxBatchReportLatencyNs, strerror(-index));
return BAD_INDEX;
}
BatchParams& params = batchParams.editValueAt(index);
params.mTSample = samplingPeriodNs;
params.mTBatch = maxBatchReportLatencyNs;
return NO_ERROR;
}
void SensorDevice::Info::selectBatchParams() {
BatchParams bestParams; // default to max Tsample and max Tbatch
SensorDevice& device(SensorDevice::getInstance());
for (size_t i = 0; i < batchParams.size(); ++i) {
if (device.isClientDisabledLocked(batchParams.keyAt(i))) {
continue;
}
bestParams.merge(batchParams[i]);
}
// if mTBatch <= mTSample, it is in streaming mode. set mTbatch to 0 to demand this explicitly.
if (bestParams.mTBatch <= bestParams.mTSample) {
bestParams.mTBatch = 0;
}
bestBatchParams = bestParams;
}
ssize_t SensorDevice::Info::removeBatchParamsForIdent(void* ident) {
ssize_t idx = batchParams.removeItem(ident);
if (idx >= 0) {
selectBatchParams();
}
return idx;
}
void SensorDevice::notifyConnectionDestroyed(void* ident) {
Mutex::Autolock _l(mLock);
mDisabledClients.erase(ident);
}
bool SensorDevice::isDirectReportSupported() const {
return mIsDirectReportSupported;
}
float SensorDevice::getResolutionForSensor(int sensorHandle) {
for (size_t i = 0; i < mSensorList.size(); i++) {
if (sensorHandle == mSensorList[i].handle) {
return mSensorList[i].resolution;
}
}
auto it = mConnectedDynamicSensors.find(sensorHandle);
if (it != mConnectedDynamicSensors.end()) {
return it->second.resolution;
}
return 0;
}
// ---------------------------------------------------------------------------
}; // namespace android
|