1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
|
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <log/log.h>
#include <sys/socket.h>
#include <utils/threads.h>
#include <android/util/ProtoOutputStream.h>
#include <frameworks/base/core/proto/android/service/sensor_service.proto.h>
#include <sensor/SensorEventQueue.h>
#include "vec.h"
#include "SensorEventConnection.h"
#include "SensorDevice.h"
#define UNUSED(x) (void)(x)
namespace android {
namespace {
// Used as the default value for the target SDK until it's obtained via getTargetSdkVersion.
constexpr int kTargetSdkUnknown = 0;
} // namespace
SensorService::SensorEventConnection::SensorEventConnection(
const sp<SensorService>& service, uid_t uid, String8 packageName, bool isDataInjectionMode,
const String16& opPackageName, const String16& attributionTag)
: mService(service), mUid(uid), mWakeLockRefCount(0), mHasLooperCallbacks(false),
mDead(false), mDataInjectionMode(isDataInjectionMode), mEventCache(nullptr),
mCacheSize(0), mMaxCacheSize(0), mTimeOfLastEventDrop(0), mEventsDropped(0),
mPackageName(packageName), mOpPackageName(opPackageName), mAttributionTag(attributionTag),
mTargetSdk(kTargetSdkUnknown), mDestroyed(false) {
mUserId = multiuser_get_user_id(mUid);
mChannel = new BitTube(mService->mSocketBufferSize);
#if DEBUG_CONNECTIONS
mEventsReceived = mEventsSentFromCache = mEventsSent = 0;
mTotalAcksNeeded = mTotalAcksReceived = 0;
#endif
}
SensorService::SensorEventConnection::~SensorEventConnection() {
ALOGD_IF(DEBUG_CONNECTIONS, "~SensorEventConnection(%p)", this);
destroy();
mService->cleanupConnection(this);
if (mEventCache != nullptr) {
delete[] mEventCache;
}
}
void SensorService::SensorEventConnection::destroy() {
mDestroyed = true;
}
void SensorService::SensorEventConnection::onFirstRef() {
LooperCallback::onFirstRef();
}
bool SensorService::SensorEventConnection::needsWakeLock() {
Mutex::Autolock _l(mConnectionLock);
return !mDead && mWakeLockRefCount > 0;
}
void SensorService::SensorEventConnection::resetWakeLockRefCount() {
Mutex::Autolock _l(mConnectionLock);
mWakeLockRefCount = 0;
}
void SensorService::SensorEventConnection::dump(String8& result) {
Mutex::Autolock _l(mConnectionLock);
result.appendFormat("\tOperating Mode: ");
if (!mService->isWhiteListedPackage(getPackageName())) {
result.append("RESTRICTED\n");
} else if (mDataInjectionMode) {
result.append("DATA_INJECTION\n");
} else {
result.append("NORMAL\n");
}
result.appendFormat("\t %s | WakeLockRefCount %d | uid %d | cache size %d | "
"max cache size %d\n", mPackageName.c_str(), mWakeLockRefCount, mUid, mCacheSize,
mMaxCacheSize);
for (auto& it : mSensorInfo) {
const FlushInfo& flushInfo = it.second;
result.appendFormat("\t %s 0x%08x | status: %s | pending flush events %d \n",
mService->getSensorName(it.first).c_str(),
it.first,
flushInfo.mFirstFlushPending ? "First flush pending" :
"active",
flushInfo.mPendingFlushEventsToSend);
}
#if DEBUG_CONNECTIONS
result.appendFormat("\t events recvd: %d | sent %d | cache %d | dropped %d |"
" total_acks_needed %d | total_acks_recvd %d\n",
mEventsReceived,
mEventsSent,
mEventsSentFromCache,
mEventsReceived - (mEventsSentFromCache + mEventsSent + mCacheSize),
mTotalAcksNeeded,
mTotalAcksReceived);
#endif
}
/**
* Dump debugging information as android.service.SensorEventConnectionProto protobuf message using
* ProtoOutputStream.
*
* See proto definition and some notes about ProtoOutputStream in
* frameworks/base/core/proto/android/service/sensor_service.proto
*/
void SensorService::SensorEventConnection::dump(util::ProtoOutputStream* proto) const {
using namespace service::SensorEventConnectionProto;
Mutex::Autolock _l(mConnectionLock);
if (!mService->isWhiteListedPackage(getPackageName())) {
proto->write(OPERATING_MODE, OP_MODE_RESTRICTED);
} else if (mDataInjectionMode) {
proto->write(OPERATING_MODE, OP_MODE_DATA_INJECTION);
} else {
proto->write(OPERATING_MODE, OP_MODE_NORMAL);
}
proto->write(PACKAGE_NAME, std::string(mPackageName.c_str()));
proto->write(WAKE_LOCK_REF_COUNT, int32_t(mWakeLockRefCount));
proto->write(UID, int32_t(mUid));
proto->write(CACHE_SIZE, int32_t(mCacheSize));
proto->write(MAX_CACHE_SIZE, int32_t(mMaxCacheSize));
for (auto& it : mSensorInfo) {
const FlushInfo& flushInfo = it.second;
const uint64_t token = proto->start(FLUSH_INFOS);
proto->write(FlushInfoProto::SENSOR_NAME,
std::string(mService->getSensorName(it.first)));
proto->write(FlushInfoProto::SENSOR_HANDLE, it.first);
proto->write(FlushInfoProto::FIRST_FLUSH_PENDING, flushInfo.mFirstFlushPending);
proto->write(FlushInfoProto::PENDING_FLUSH_EVENTS_TO_SEND,
flushInfo.mPendingFlushEventsToSend);
proto->end(token);
}
#if DEBUG_CONNECTIONS
proto->write(EVENTS_RECEIVED, mEventsReceived);
proto->write(EVENTS_SENT, mEventsSent);
proto->write(EVENTS_CACHE, mEventsSentFromCache);
proto->write(EVENTS_DROPPED, mEventsReceived - (mEventsSentFromCache + mEventsSent +
mCacheSize));
proto->write(TOTAL_ACKS_NEEDED, mTotalAcksNeeded);
proto->write(TOTAL_ACKS_RECEIVED, mTotalAcksReceived);
#endif
}
bool SensorService::SensorEventConnection::addSensor(int32_t handle) {
Mutex::Autolock _l(mConnectionLock);
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(handle);
if (si == nullptr ||
!mService->canAccessSensor(si->getSensor(), "Add to SensorEventConnection: ",
mOpPackageName) ||
mSensorInfo.count(handle) > 0) {
return false;
}
mSensorInfo[handle] = FlushInfo();
return true;
}
bool SensorService::SensorEventConnection::removeSensor(int32_t handle) {
Mutex::Autolock _l(mConnectionLock);
if (mSensorInfo.erase(handle) >= 0) {
return true;
}
return false;
}
std::vector<int32_t> SensorService::SensorEventConnection::getActiveSensorHandles() const {
Mutex::Autolock _l(mConnectionLock);
std::vector<int32_t> list;
for (auto& it : mSensorInfo) {
list.push_back(it.first);
}
return list;
}
bool SensorService::SensorEventConnection::hasSensor(int32_t handle) const {
Mutex::Autolock _l(mConnectionLock);
return mSensorInfo.count(handle) > 0;
}
bool SensorService::SensorEventConnection::hasAnySensor() const {
Mutex::Autolock _l(mConnectionLock);
return mSensorInfo.size() ? true : false;
}
bool SensorService::SensorEventConnection::hasOneShotSensors() const {
Mutex::Autolock _l(mConnectionLock);
for (auto &it : mSensorInfo) {
const int handle = it.first;
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(handle);
if (si != nullptr && si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
return true;
}
}
return false;
}
String8 SensorService::SensorEventConnection::getPackageName() const {
return mPackageName;
}
void SensorService::SensorEventConnection::setFirstFlushPending(int32_t handle,
bool value) {
Mutex::Autolock _l(mConnectionLock);
if (mSensorInfo.count(handle) > 0) {
FlushInfo& flushInfo = mSensorInfo[handle];
flushInfo.mFirstFlushPending = value;
}
}
void SensorService::SensorEventConnection::updateLooperRegistration(const sp<Looper>& looper) {
Mutex::Autolock _l(mConnectionLock);
updateLooperRegistrationLocked(looper);
}
void SensorService::SensorEventConnection::updateLooperRegistrationLocked(
const sp<Looper>& looper) {
bool isConnectionActive = (mSensorInfo.size() > 0 && !mDataInjectionMode) ||
mDataInjectionMode;
// If all sensors are unregistered OR Looper has encountered an error, we can remove the Fd from
// the Looper if it has been previously added.
if (!isConnectionActive || mDead) { if (mHasLooperCallbacks) {
ALOGD_IF(DEBUG_CONNECTIONS, "%p removeFd fd=%d", this,
mChannel->getSendFd());
looper->removeFd(mChannel->getSendFd()); mHasLooperCallbacks = false; }
return; }
int looper_flags = 0;
if (mCacheSize > 0) looper_flags |= ALOOPER_EVENT_OUTPUT;
if (mDataInjectionMode) looper_flags |= ALOOPER_EVENT_INPUT;
for (auto& it : mSensorInfo) {
const int handle = it.first;
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(handle);
if (si != nullptr && si->getSensor().isWakeUpSensor()) {
looper_flags |= ALOOPER_EVENT_INPUT;
}
}
// If flags is still set to zero, we don't need to add this fd to the Looper, if the fd has
// already been added, remove it. This is likely to happen when ALL the events stored in the
// cache have been sent to the corresponding app.
if (looper_flags == 0) {
if (mHasLooperCallbacks) {
ALOGD_IF(DEBUG_CONNECTIONS, "removeFd fd=%d", mChannel->getSendFd());
looper->removeFd(mChannel->getSendFd());
mHasLooperCallbacks = false;
}
return;
}
// Add the file descriptor to the Looper for receiving acknowledegments if the app has
// registered for wake-up sensors OR for sending events in the cache.
int ret = looper->addFd(mChannel->getSendFd(), 0, looper_flags, this, nullptr);
if (ret == 1) {
ALOGD_IF(DEBUG_CONNECTIONS, "%p addFd fd=%d", this, mChannel->getSendFd());
mHasLooperCallbacks = true;
} else {
ALOGE("Looper::addFd failed ret=%d fd=%d", ret, mChannel->getSendFd());
}
}
bool SensorService::SensorEventConnection::incrementPendingFlushCountIfHasAccess(int32_t handle) {
if (hasSensorAccess()) {
Mutex::Autolock _l(mConnectionLock);
if (mSensorInfo.count(handle) > 0) {
FlushInfo& flushInfo = mSensorInfo[handle];
flushInfo.mPendingFlushEventsToSend++;
}
return true;
} else {
return false;
}
}
status_t SensorService::SensorEventConnection::sendEvents(
sensors_event_t const* buffer, size_t numEvents,
sensors_event_t* scratch,
wp<const SensorEventConnection> const * mapFlushEventsToConnections) {
// filter out events not for this connection
std::unique_ptr<sensors_event_t[]> sanitizedBuffer;
int count = 0;
Mutex::Autolock _l(mConnectionLock);
if (scratch) {
size_t i=0;
while (i<numEvents) {
int32_t sensor_handle = buffer[i].sensor;
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
ALOGD_IF(DEBUG_CONNECTIONS, "flush complete event sensor==%d ",
buffer[i].meta_data.sensor);
// Setting sensor_handle to the correct sensor to ensure the sensor events per
// connection are filtered correctly. buffer[i].sensor is zero for meta_data
// events.
sensor_handle = buffer[i].meta_data.sensor;
}
// Check if this connection has registered for this sensor. If not continue to the
// next sensor_event.
if (mSensorInfo.count(sensor_handle) == 0) {
++i;
continue;
}
FlushInfo& flushInfo = mSensorInfo[sensor_handle];
// Check if there is a pending flush_complete event for this sensor on this connection.
if (buffer[i].type == SENSOR_TYPE_META_DATA && flushInfo.mFirstFlushPending == true &&
mapFlushEventsToConnections[i] == this) {
flushInfo.mFirstFlushPending = false;
ALOGD_IF(DEBUG_CONNECTIONS, "First flush event for sensor==%d ",
buffer[i].meta_data.sensor);
++i;
continue;
}
// If there is a pending flush complete event for this sensor on this connection,
// ignore the event and proceed to the next.
if (flushInfo.mFirstFlushPending) {
++i;
continue;
}
do {
// Keep copying events into the scratch buffer as long as they are regular
// sensor_events are from the same sensor_handle OR they are flush_complete_events
// from the same sensor_handle AND the current connection is mapped to the
// corresponding flush_complete_event.
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
if (mapFlushEventsToConnections[i] == this) {
scratch[count++] = buffer[i];
}
} else {
// Regular sensor event, just copy it to the scratch buffer after checking
// the AppOp.
if (hasSensorAccess() && noteOpIfRequired(buffer[i])) {
scratch[count++] = buffer[i];
}
}
i++;
} while ((i<numEvents) && ((buffer[i].sensor == sensor_handle &&
buffer[i].type != SENSOR_TYPE_META_DATA) ||
(buffer[i].type == SENSOR_TYPE_META_DATA &&
buffer[i].meta_data.sensor == sensor_handle)));
}
} else {
if (hasSensorAccess()) {
scratch = const_cast<sensors_event_t *>(buffer);
count = numEvents;
} else {
sanitizedBuffer.reset(new sensors_event_t[numEvents]);
scratch = sanitizedBuffer.get();
for (size_t i = 0; i < numEvents; i++) {
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
scratch[count++] = buffer[i++];
}
}
}
}
sendPendingFlushEventsLocked();
// Early return if there are no events for this connection.
if (count == 0) {
return status_t(NO_ERROR);
}
#if DEBUG_CONNECTIONS
mEventsReceived += count;
#endif
if (mCacheSize != 0) {
// There are some events in the cache which need to be sent first. Copy this buffer to
// the end of cache.
appendEventsToCacheLocked(scratch, count);
return status_t(NO_ERROR);
}
int index_wake_up_event = -1;
if (hasSensorAccess()) {
index_wake_up_event = findWakeUpSensorEventLocked(scratch, count);
if (index_wake_up_event >= 0) {
scratch[index_wake_up_event].flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
++mWakeLockRefCount;
#if DEBUG_CONNECTIONS
++mTotalAcksNeeded;
#endif
}
}
// NOTE: ASensorEvent and sensors_event_t are the same type.
ssize_t size = SensorEventQueue::write(mChannel,
reinterpret_cast<ASensorEvent const*>(scratch), count);
if (size < 0) {
// Write error, copy events to local cache.
if (index_wake_up_event >= 0) {
// If there was a wake_up sensor_event, reset the flag.
scratch[index_wake_up_event].flags &= ~WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
if (mWakeLockRefCount > 0) {
--mWakeLockRefCount;
}
#if DEBUG_CONNECTIONS
--mTotalAcksNeeded;
#endif
}
if (mEventCache == nullptr) {
mMaxCacheSize = computeMaxCacheSizeLocked();
mEventCache = new sensors_event_t[mMaxCacheSize];
mCacheSize = 0;
}
// Save the events so that they can be written later
appendEventsToCacheLocked(scratch, count);
// Add this file descriptor to the looper to get a callback when this fd is available for
// writing.
updateLooperRegistrationLocked(mService->getLooper());
return size;
}
#if DEBUG_CONNECTIONS
if (size > 0) {
mEventsSent += count;
}
#endif
return size < 0 ? status_t(size) : status_t(NO_ERROR);
}
bool SensorService::SensorEventConnection::hasSensorAccess() {
return mService->isUidActive(mUid)
&& !mService->mSensorPrivacyPolicy->isSensorPrivacyEnabled();
}
bool SensorService::SensorEventConnection::noteOpIfRequired(const sensors_event_t& event) {
bool success = true;
const auto iter = mHandleToAppOp.find(event.sensor);
if (iter != mHandleToAppOp.end()) {
if (mTargetSdk == kTargetSdkUnknown) {
// getTargetSdkVersion returns -1 if it fails so this operation should only be run once
// per connection and then cached. Perform this here as opposed to in the constructor to
// avoid log spam for NDK/VNDK clients that don't use sensors guarded with permissions
// and pass in invalid op package names.
mTargetSdk = SensorService::getTargetSdkVersion(mOpPackageName);
}
// Special handling for step count/detect backwards compatibility: if the app's target SDK
// is pre-Q, still permit delivering events to the app even if permission isn't granted
// (since this permission was only introduced in Q)
if ((event.type == SENSOR_TYPE_STEP_COUNTER || event.type == SENSOR_TYPE_STEP_DETECTOR) &&
mTargetSdk > 0 && mTargetSdk <= __ANDROID_API_P__) {
success = true;
} else {
int32_t sensorHandle = event.sensor;
String16 noteMsg("Sensor event (");
noteMsg.append(String16(mService->getSensorStringType(sensorHandle)));
noteMsg.append(String16(")"));
int32_t appOpMode = mService->sAppOpsManager.noteOp(iter->second, mUid,
mOpPackageName, mAttributionTag,
noteMsg);
success = (appOpMode == AppOpsManager::MODE_ALLOWED);
}
}
return success;
}
void SensorService::SensorEventConnection::reAllocateCacheLocked(sensors_event_t const* scratch,
int count) {
sensors_event_t *eventCache_new;
const int new_cache_size = computeMaxCacheSizeLocked();
// Allocate new cache, copy over events from the old cache & scratch, free up memory.
eventCache_new = new sensors_event_t[new_cache_size];
memcpy(eventCache_new, mEventCache, mCacheSize * sizeof(sensors_event_t));
memcpy(&eventCache_new[mCacheSize], scratch, count * sizeof(sensors_event_t));
ALOGD_IF(DEBUG_CONNECTIONS, "reAllocateCacheLocked maxCacheSize=%d %d", mMaxCacheSize,
new_cache_size);
delete[] mEventCache;
mEventCache = eventCache_new;
mCacheSize += count;
mMaxCacheSize = new_cache_size;
}
void SensorService::SensorEventConnection::appendEventsToCacheLocked(sensors_event_t const* events,
int count) {
if (count <= 0) {
return;
} else if (mCacheSize + count <= mMaxCacheSize) {
// The events fit within the current cache: add them
memcpy(&mEventCache[mCacheSize], events, count * sizeof(sensors_event_t));
mCacheSize += count;
} else if (mCacheSize + count <= computeMaxCacheSizeLocked()) {
// The events fit within a resized cache: resize the cache and add the events
reAllocateCacheLocked(events, count);
} else {
// The events do not fit within the cache: drop the oldest events.
int freeSpace = mMaxCacheSize - mCacheSize;
// Drop up to the currently cached number of events to make room for new events
int cachedEventsToDrop = std::min(mCacheSize, count - freeSpace);
// New events need to be dropped if there are more new events than the size of the cache
int newEventsToDrop = std::max(0, count - mMaxCacheSize);
// Determine the number of new events to copy into the cache
int eventsToCopy = std::min(mMaxCacheSize, count);
constexpr nsecs_t kMinimumTimeBetweenDropLogNs = 2 * 1000 * 1000 * 1000; // 2 sec
if (events[0].timestamp - mTimeOfLastEventDrop > kMinimumTimeBetweenDropLogNs) {
ALOGW("Dropping %d cached events (%d/%d) to save %d/%d new events. %d events previously"
" dropped", cachedEventsToDrop, mCacheSize, mMaxCacheSize, eventsToCopy,
count, mEventsDropped);
mEventsDropped = 0;
mTimeOfLastEventDrop = events[0].timestamp;
} else {
// Record the number dropped
mEventsDropped += cachedEventsToDrop + newEventsToDrop;
}
// Check for any flush complete events in the events that will be dropped
countFlushCompleteEventsLocked(mEventCache, cachedEventsToDrop);
countFlushCompleteEventsLocked(events, newEventsToDrop);
// Only shift the events if they will not all be overwritten
if (eventsToCopy != mMaxCacheSize) {
memmove(mEventCache, &mEventCache[cachedEventsToDrop],
(mCacheSize - cachedEventsToDrop) * sizeof(sensors_event_t));
}
mCacheSize -= cachedEventsToDrop;
// Copy the events into the cache
memcpy(&mEventCache[mCacheSize], &events[newEventsToDrop],
eventsToCopy * sizeof(sensors_event_t));
mCacheSize += eventsToCopy;
}
}
void SensorService::SensorEventConnection::sendPendingFlushEventsLocked() {
ASensorEvent flushCompleteEvent;
memset(&flushCompleteEvent, 0, sizeof(flushCompleteEvent));
flushCompleteEvent.type = SENSOR_TYPE_META_DATA;
// Loop through all the sensors for this connection and check if there are any pending
// flush complete events to be sent.
for (auto& it : mSensorInfo) {
const int handle = it.first;
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(handle);
if (si == nullptr) {
continue;
}
FlushInfo& flushInfo = it.second;
while (flushInfo.mPendingFlushEventsToSend > 0) {
flushCompleteEvent.meta_data.sensor = handle;
bool wakeUpSensor = si->getSensor().isWakeUpSensor();
if (wakeUpSensor) {
++mWakeLockRefCount;
flushCompleteEvent.flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
}
ssize_t size = SensorEventQueue::write(mChannel, &flushCompleteEvent, 1);
if (size < 0) {
if (wakeUpSensor) --mWakeLockRefCount;
return;
}
ALOGD_IF(DEBUG_CONNECTIONS, "sent dropped flush complete event==%d ",
flushCompleteEvent.meta_data.sensor);
flushInfo.mPendingFlushEventsToSend--;
}
}
}
void SensorService::SensorEventConnection::writeToSocketFromCache() {
// At a time write at most half the size of the receiver buffer in SensorEventQueue OR
// half the size of the socket buffer allocated in BitTube whichever is smaller.
const int maxWriteSize = helpers::min(SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT/2,
int(mService->mSocketBufferSize/(sizeof(sensors_event_t)*2)));
Mutex::Autolock _l(mConnectionLock);
// Send pending flush complete events (if any)
sendPendingFlushEventsLocked();
for (int numEventsSent = 0; numEventsSent < mCacheSize;) {
const int numEventsToWrite = helpers::min(mCacheSize - numEventsSent, maxWriteSize);
int index_wake_up_event = -1;
if (hasSensorAccess()) {
index_wake_up_event =
findWakeUpSensorEventLocked(mEventCache + numEventsSent, numEventsToWrite);
if (index_wake_up_event >= 0) {
mEventCache[index_wake_up_event + numEventsSent].flags |=
WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
++mWakeLockRefCount;
#if DEBUG_CONNECTIONS
++mTotalAcksNeeded;
#endif
}
}
ssize_t size = SensorEventQueue::write(mChannel,
reinterpret_cast<ASensorEvent const*>(mEventCache + numEventsSent),
numEventsToWrite);
if (size < 0) {
if (index_wake_up_event >= 0) {
// If there was a wake_up sensor_event, reset the flag.
mEventCache[index_wake_up_event + numEventsSent].flags &=
~WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
if (mWakeLockRefCount > 0) {
--mWakeLockRefCount;
}
#if DEBUG_CONNECTIONS
--mTotalAcksNeeded;
#endif
}
memmove(mEventCache, &mEventCache[numEventsSent],
(mCacheSize - numEventsSent) * sizeof(sensors_event_t));
ALOGD_IF(DEBUG_CONNECTIONS, "wrote %d events from cache size==%d ",
numEventsSent, mCacheSize);
mCacheSize -= numEventsSent;
return;
}
numEventsSent += numEventsToWrite;
#if DEBUG_CONNECTIONS
mEventsSentFromCache += numEventsToWrite;
#endif
}
ALOGD_IF(DEBUG_CONNECTIONS, "wrote all events from cache size=%d ", mCacheSize);
// All events from the cache have been sent. Reset cache size to zero.
mCacheSize = 0;
// There are no more events in the cache. We don't need to poll for write on the fd.
// Update Looper registration.
updateLooperRegistrationLocked(mService->getLooper());
}
void SensorService::SensorEventConnection::countFlushCompleteEventsLocked(
sensors_event_t const* scratch, const int numEventsDropped) {
ALOGD_IF(DEBUG_CONNECTIONS, "dropping %d events ", numEventsDropped);
// Count flushComplete events in the events that are about to the dropped. These will be sent
// separately before the next batch of events.
for (int j = 0; j < numEventsDropped; ++j) {
if (scratch[j].type == SENSOR_TYPE_META_DATA) {
if (mSensorInfo.count(scratch[j].meta_data.sensor) == 0) {
ALOGW("%s: sensor 0x%x is not found in connection",
__func__, scratch[j].meta_data.sensor);
continue;
}
FlushInfo& flushInfo = mSensorInfo[scratch[j].meta_data.sensor];
flushInfo.mPendingFlushEventsToSend++;
ALOGD_IF(DEBUG_CONNECTIONS, "increment pendingFlushCount %d",
flushInfo.mPendingFlushEventsToSend);
}
}
return;
}
int SensorService::SensorEventConnection::findWakeUpSensorEventLocked(
sensors_event_t const* scratch, const int count) {
for (int i = 0; i < count; ++i) {
if (mService->isWakeUpSensorEvent(scratch[i])) {
return i;
}
}
return -1;
}
sp<BitTube> SensorService::SensorEventConnection::getSensorChannel() const
{
return mChannel;
}
status_t SensorService::SensorEventConnection::enableDisable(
int handle, bool enabled, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs,
int reservedFlags)
{
if (mDestroyed) {
android_errorWriteLog(0x534e4554, "168211968");
return DEAD_OBJECT;
}
status_t err;
if (enabled) {
nsecs_t requestedSamplingPeriodNs = samplingPeriodNs;
bool isSensorCapped = false;
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(handle);
if (si != nullptr) {
const Sensor& s = si->getSensor();
if (mService->isSensorInCappedSet(s.getType())) {
isSensorCapped = true;
}
}
if (isSensorCapped) {
err = mService->adjustSamplingPeriodBasedOnMicAndPermission(&samplingPeriodNs,
String16(mOpPackageName));
if (err != OK) {
return err;
}
}
err = mService->enable(this, handle, samplingPeriodNs, maxBatchReportLatencyNs,
reservedFlags, mOpPackageName);
if (err == OK && isSensorCapped) {
if ((requestedSamplingPeriodNs >= SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS) ||
!isRateCappedBasedOnPermission()) {
mMicSamplingPeriodBackup[handle] = requestedSamplingPeriodNs;
} else {
mMicSamplingPeriodBackup[handle] = SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS;
}
}
} else {
err = mService->disable(this, handle);
mMicSamplingPeriodBackup.erase(handle);
}
return err;
}
status_t SensorService::SensorEventConnection::setEventRate(int handle, nsecs_t samplingPeriodNs) {
if (mDestroyed) {
android_errorWriteLog(0x534e4554, "168211968");
return DEAD_OBJECT;
}
nsecs_t requestedSamplingPeriodNs = samplingPeriodNs;
bool isSensorCapped = false;
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(handle);
if (si != nullptr) {
const Sensor& s = si->getSensor();
if (mService->isSensorInCappedSet(s.getType())) {
isSensorCapped = true;
}
}
if (isSensorCapped) {
status_t err = mService->adjustSamplingPeriodBasedOnMicAndPermission(&samplingPeriodNs,
String16(mOpPackageName));
if (err != OK) {
return err;
}
}
status_t ret = mService->setEventRate(this, handle, samplingPeriodNs, mOpPackageName);
if (ret == OK && isSensorCapped) {
if ((requestedSamplingPeriodNs >= SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS) ||
!isRateCappedBasedOnPermission()) {
mMicSamplingPeriodBackup[handle] = requestedSamplingPeriodNs;
} else {
mMicSamplingPeriodBackup[handle] = SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS;
}
}
return ret;
}
void SensorService::SensorEventConnection::onMicSensorAccessChanged(bool isMicToggleOn) {
if (isMicToggleOn) {
capRates();
} else {
uncapRates();
}
}
void SensorService::SensorEventConnection::capRates() {
Mutex::Autolock _l(mConnectionLock);
SensorDevice& dev(SensorDevice::getInstance());
for (auto &i : mMicSamplingPeriodBackup) {
int handle = i.first;
nsecs_t samplingPeriodNs = i.second;
if (samplingPeriodNs < SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS) {
if (hasSensorAccess()) {
mService->setEventRate(this, handle, SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS,
mOpPackageName);
} else {
// Update SensorDevice with the capped rate so that when sensor access is restored,
// the correct event rate is used.
dev.onMicSensorAccessChanged(this, handle,
SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS);
}
}
}
}
void SensorService::SensorEventConnection::uncapRates() {
Mutex::Autolock _l(mConnectionLock);
SensorDevice& dev(SensorDevice::getInstance());
for (auto &i : mMicSamplingPeriodBackup) {
int handle = i.first;
nsecs_t samplingPeriodNs = i.second;
if (samplingPeriodNs < SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS) {
if (hasSensorAccess()) {
mService->setEventRate(this, handle, samplingPeriodNs, mOpPackageName);
} else {
// Update SensorDevice with the uncapped rate so that when sensor access is
// restored, the correct event rate is used.
dev.onMicSensorAccessChanged(this, handle, samplingPeriodNs);
}
}
}
}
status_t SensorService::SensorEventConnection::flush() {
if (mDestroyed) {
return DEAD_OBJECT;
}
return mService->flushSensor(this, mOpPackageName);
}
int32_t SensorService::SensorEventConnection::configureChannel(int handle, int rateLevel) {
// SensorEventConnection does not support configureChannel, parameters not used
UNUSED(handle);
UNUSED(rateLevel);
return INVALID_OPERATION;
}
int SensorService::SensorEventConnection::handleEvent(int fd, int events, void* /*data*/) {
if (events & ALOOPER_EVENT_HANGUP || events & ALOOPER_EVENT_ERROR) {
{
// If the Looper encounters some error, set the flag mDead, reset mWakeLockRefCount,
// and remove the fd from Looper. Call checkWakeLockState to know if SensorService
// can release the wake-lock.
ALOGD_IF(DEBUG_CONNECTIONS, "%p Looper error %d", this, fd);
Mutex::Autolock _l(mConnectionLock);
mDead = true;
mWakeLockRefCount = 0;
updateLooperRegistrationLocked(mService->getLooper());
}
mService->checkWakeLockState();
if (mDataInjectionMode) {
// If the Looper has encountered some error in data injection mode, reset SensorService
// back to normal mode.
mService->resetToNormalMode();
mDataInjectionMode = false;
}
return 1;
}
if (events & ALOOPER_EVENT_INPUT) {
unsigned char buf[sizeof(sensors_event_t)];
ssize_t numBytesRead = ::recv(fd, buf, sizeof(buf), MSG_DONTWAIT);
{
Mutex::Autolock _l(mConnectionLock);
if (numBytesRead == sizeof(sensors_event_t)) {
if (!mDataInjectionMode) {
ALOGE("Data injected in normal mode, dropping event"
"package=%s uid=%d", mPackageName.c_str(), mUid);
// Unregister call backs.
return 0;
}
sensors_event_t sensor_event;
memcpy(&sensor_event, buf, sizeof(sensors_event_t));
sp<SensorInterface> si =
mService->getSensorInterfaceFromHandle(sensor_event.sensor);
if (si == nullptr) {
return 1;
}
SensorDevice& dev(SensorDevice::getInstance());
sensor_event.type = si->getSensor().getType();
dev.injectSensorData(&sensor_event);
#if DEBUG_CONNECTIONS
++mEventsReceived;
#endif
} else if (numBytesRead == sizeof(uint32_t)) {
uint32_t numAcks = 0;
memcpy(&numAcks, buf, numBytesRead);
// Check to ensure there are no read errors in recv, numAcks is always
// within the range and not zero. If any of the above don't hold reset
// mWakeLockRefCount to zero.
if (numAcks > 0 && numAcks < mWakeLockRefCount) {
mWakeLockRefCount -= numAcks;
} else {
mWakeLockRefCount = 0;
}
#if DEBUG_CONNECTIONS
mTotalAcksReceived += numAcks;
#endif
} else {
// Read error, reset wakelock refcount.
mWakeLockRefCount = 0;
}
}
// Check if wakelock can be released by sensorservice. mConnectionLock needs to be released
// here as checkWakeLockState() will need it.
if (mWakeLockRefCount == 0) {
mService->checkWakeLockState();
}
// continue getting callbacks.
return 1;
}
if (events & ALOOPER_EVENT_OUTPUT) {
// send sensor data that is stored in mEventCache for this connection.
mService->sendEventsFromCache(this);
}
return 1;
}
int SensorService::SensorEventConnection::computeMaxCacheSizeLocked() const {
size_t fifoWakeUpSensors = 0;
size_t fifoNonWakeUpSensors = 0;
for (auto& it : mSensorInfo) {
sp<SensorInterface> si = mService->getSensorInterfaceFromHandle(it.first);
if (si == nullptr) {
continue;
}
const Sensor& sensor = si->getSensor();
if (sensor.getFifoReservedEventCount() == sensor.getFifoMaxEventCount()) {
// Each sensor has a reserved fifo. Sum up the fifo sizes for all wake up sensors and
// non wake_up sensors.
if (sensor.isWakeUpSensor()) {
fifoWakeUpSensors += sensor.getFifoReservedEventCount();
} else {
fifoNonWakeUpSensors += sensor.getFifoReservedEventCount();
}
} else {
// Shared fifo. Compute the max of the fifo sizes for wake_up and non_wake up sensors.
if (sensor.isWakeUpSensor()) {
fifoWakeUpSensors = fifoWakeUpSensors > sensor.getFifoMaxEventCount() ?
fifoWakeUpSensors : sensor.getFifoMaxEventCount();
} else {
fifoNonWakeUpSensors = fifoNonWakeUpSensors > sensor.getFifoMaxEventCount() ?
fifoNonWakeUpSensors : sensor.getFifoMaxEventCount();
}
}
}
if (fifoWakeUpSensors + fifoNonWakeUpSensors == 0) {
// It is extremely unlikely that there is a write failure in non batch mode. Return a cache
// size that is equal to that of the batch mode.
// ALOGW("Write failure in non-batch mode");
return MAX_SOCKET_BUFFER_SIZE_BATCHED/sizeof(sensors_event_t);
}
return fifoWakeUpSensors + fifoNonWakeUpSensors;
}
} // namespace android
|