1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* WARNING: Do not include and use these directly. Use jni_macros.h instead!
* The "detail" namespace should be a strong hint not to depend on the internals,
* which could change at any time.
*
* This implements the underlying mechanism for compile-time JNI signature/ctype checking
* and inference.
*
* This file provides the constexpr basic blocks such as strings, arrays, vectors
* as well as the JNI-specific parsing functionality.
*
* Everything is implemented via generic-style (templates without metaprogramming)
* wherever possible. Traditional template metaprogramming is used sparingly.
*
* Everything in this file except ostream<< is constexpr.
*/
#pragma once
#include <iostream> // std::ostream
#include <jni.h> // jni typedefs, JniNativeMethod.
#include <type_traits> // std::common_type, std::remove_cv
namespace nativehelper {
namespace detail {
// If CHECK evaluates to false then X_ASSERT will halt compilation.
//
// Asserts meant to be used only within constexpr context.
#if defined(JNI_SIGNATURE_CHECKER_DISABLE_ASSERTS)
# define X_ASSERT(CHECK) do { if ((false)) { (CHECK) ? void(0) : void(0); } } while (false)
#else
# define X_ASSERT(CHECK) \
( (CHECK) ? void(0) : jni_assertion_failure(#CHECK) )
#endif
// The runtime 'jni_assert' will never get called from a constexpr context;
// instead compilation will abort with a stack trace.
//
// Inspect the frame above this one to see the exact nature of the failure.
inline void jni_assertion_failure(const char* /*msg*/) __attribute__((noreturn));
inline void jni_assertion_failure(const char* /*msg*/) {
std::terminate();
}
// An immutable constexpr string view, similar to std::string_view but for C++14.
// For a mutable string see instead ConstexprVector<char>.
//
// As it is a read-only view into a string, it is not guaranteed to be zero-terminated.
struct ConstexprStringView {
// Implicit conversion from string literal:
// ConstexprStringView str = "hello_world";
template<size_t N>
constexpr ConstexprStringView(const char (& lit)[N]) // NOLINT: explicit.
: _array(lit), _size(N - 1) {
// Using an array of characters is not allowed because the inferred size would be wrong.
// Use the other constructor instead for that.
X_ASSERT(lit[N - 1] == '\0');
}
constexpr ConstexprStringView(const char* ptr, size_t size)
: _array(ptr), _size(size) {
// See the below constructor instead.
X_ASSERT(ptr != nullptr);
}
// No-arg constructor: Create empty view.
constexpr ConstexprStringView() : _array(""), _size(0u) {}
constexpr size_t size() const {
return _size;
}
constexpr bool empty() const {
return size() == 0u;
}
constexpr char operator[](size_t i) const {
X_ASSERT(i <= size());
return _array[i];
}
// Create substring from this[start..start+len).
constexpr ConstexprStringView substr(size_t start, size_t len) const {
X_ASSERT(start <= size());
X_ASSERT(len <= size() - start);
return ConstexprStringView(&_array[start], len);
}
// Create maximum length substring that begins at 'start'.
constexpr ConstexprStringView substr(size_t start) const {
X_ASSERT(start <= size());
return substr(start, size() - start);
}
using const_iterator = const char*;
constexpr const_iterator begin() const {
return &_array[0];
}
constexpr const_iterator end() const {
return &_array[size()];
}
private:
const char* _array; // Never-null for simplicity.
size_t _size;
};
constexpr bool
operator==(const ConstexprStringView& lhs, const ConstexprStringView& rhs) {
if (lhs.size() != rhs.size()) {
return false;
}
for (size_t i = 0; i < lhs.size(); ++i) {
if (lhs[i] != rhs[i]) {
return false;
}
}
return true;
}
constexpr bool
operator!=(const ConstexprStringView& lhs, const ConstexprStringView& rhs) {
return !(lhs == rhs);
}
inline std::ostream& operator<<(std::ostream& os, const ConstexprStringView& str) {
for (char c : str) {
os << c;
}
return os;
}
constexpr bool IsValidJniDescriptorStart(char shorty) {
constexpr char kValidJniStarts[] =
{'V', 'Z', 'B', 'C', 'S', 'I', 'J', 'F', 'D', 'L', '[', '(', ')'};
for (char c : kValidJniStarts) {
if (c == shorty) {
return true;
}
}
return false;
}
// A constexpr "vector" that supports storing a variable amount of Ts
// in an array-like interface.
//
// An up-front kMaxSize must be given since constexpr does not support
// dynamic allocations.
template<typename T, size_t kMaxSize>
struct ConstexprVector {
public:
constexpr explicit ConstexprVector() : _size(0u), _array{} {
}
private:
// Custom iterator to support ptr-one-past-end into the union array without
// undefined behavior.
template<typename Elem>
struct VectorIterator {
Elem* ptr;
constexpr VectorIterator& operator++() {
++ptr;
return *this;
}
constexpr VectorIterator operator++(int) const {
VectorIterator tmp(*this);
++tmp;
return tmp;
}
constexpr /*T&*/ auto& operator*() {
// Use 'auto' here since using 'T' is incorrect with const_iterator.
return ptr->_value;
}
constexpr const /*T&*/ auto& operator*() const {
// Use 'auto' here for consistency with above.
return ptr->_value;
}
constexpr bool operator==(const VectorIterator& other) const {
return ptr == other.ptr;
}
constexpr bool operator!=(const VectorIterator& other) const {
return !(*this == other);
}
};
// Do not require that T is default-constructible by using a union.
struct MaybeElement {
union {
T _value;
};
};
public:
using iterator = VectorIterator<MaybeElement>;
using const_iterator = VectorIterator<const MaybeElement>;
constexpr iterator begin() {
return {&_array[0]};
}
constexpr iterator end() {
return {&_array[size()]};
}
constexpr const_iterator begin() const {
return {&_array[0]};
}
constexpr const_iterator end() const {
return {&_array[size()]};
}
constexpr void push_back(const T& value) {
X_ASSERT(_size + 1 <= kMaxSize);
_array[_size]._value = value;
_size++;
}
// A pop operation could also be added since constexpr T's
// have default destructors, it would just be _size--.
// We do not need a pop() here though.
constexpr const T& operator[](size_t i) const {
return _array[i]._value;
}
constexpr T& operator[](size_t i) {
return _array[i]._value;
}
constexpr size_t size() const {
return _size;
}
private:
size_t _size;
MaybeElement _array[kMaxSize];
};
// Parsed and validated "long" form of a single JNI descriptor.
// e.g. one of "J", "Ljava/lang/Object;" etc.
struct JniDescriptorNode {
ConstexprStringView longy;
constexpr JniDescriptorNode(ConstexprStringView longy) : longy(longy) { // NOLINT(google-explicit-constructor)
X_ASSERT(!longy.empty());
}
constexpr JniDescriptorNode() : longy() {}
constexpr char shorty() {
// Must be initialized with the non-default constructor.
X_ASSERT(!longy.empty());
return longy[0];
}
};
inline std::ostream& operator<<(std::ostream& os, const JniDescriptorNode& node) {
os << node.longy;
return os;
}
// Equivalent of C++17 std::optional.
//
// An optional is essentially a type safe
// union {
// void Nothing,
// T Some;
// };
//
template<typename T>
struct ConstexprOptional {
// Create a default optional with no value.
constexpr ConstexprOptional() : _has_value(false), _nothing() {
}
// Create an optional with a value.
constexpr ConstexprOptional(const T& value) // NOLINT(google-explicit-constructor)
: _has_value(true), _value(value) {
}
constexpr explicit operator bool() const {
return _has_value;
}
constexpr bool has_value() const {
return _has_value;
}
constexpr const T& value() const {
X_ASSERT(has_value());
return _value;
}
constexpr const T* operator->() const {
return &(value());
}
constexpr const T& operator*() const {
return value();
}
private:
bool _has_value;
// The "Nothing" is likely unnecessary but improves readability.
struct Nothing {};
union {
Nothing _nothing;
T _value;
};
};
template<typename T>
constexpr bool
operator==(const ConstexprOptional<T>& lhs, const ConstexprOptional<T>& rhs) {
if (lhs && rhs) {
return lhs.value() == rhs.value();
}
return lhs.has_value() == rhs.has_value();
}
template<typename T>
constexpr bool
operator!=(const ConstexprOptional<T>& lhs, const ConstexprOptional<T>& rhs) {
return !(lhs == rhs);
}
template<typename T>
inline std::ostream& operator<<(std::ostream& os, const ConstexprOptional<T>& val) {
if (val) {
os << val.value();
}
return os;
}
// Equivalent of std::nullopt
// Allows implicit conversion to any empty ConstexprOptional<T>.
// Mostly useful for macros that need to return an empty constexpr optional.
struct NullConstexprOptional {
template<typename T>
constexpr operator ConstexprOptional<T>() const { // NOLINT(google-explicit-constructor)
return ConstexprOptional<T>();
}
};
inline std::ostream& operator<<(std::ostream& os, NullConstexprOptional) {
return os;
}
#if !defined(PARSE_FAILURES_NONFATAL)
// Unfortunately we cannot have custom messages here, as it just prints a stack trace with the
// macros expanded. This is at least more flexible than static_assert which requires a string
// literal.
// NOTE: The message string literal must be on same line as the macro to be seen during a
// compilation error.
#define PARSE_FAILURE(msg) X_ASSERT(! #msg)
#define PARSE_ASSERT_MSG(cond, msg) X_ASSERT(#msg && (cond))
#define PARSE_ASSERT(cond) X_ASSERT(cond)
#else
#define PARSE_FAILURE(msg) return NullConstexprOptional{};
#define PARSE_ASSERT_MSG(cond, msg) if (!(cond)) { PARSE_FAILURE(msg); }
#define PARSE_ASSERT(cond) if (!(cond)) { PARSE_FAILURE(""); }
#endif
// This is a placeholder function and should not be called directly.
constexpr void ParseFailure(const char* msg) {
(void) msg; // intentionally no-op.
}
// Temporary parse data when parsing a function descriptor.
struct ParseTypeDescriptorResult {
// A single argument descriptor, e.g. "V" or "Ljava/lang/Object;"
ConstexprStringView token;
// The remainder of the function descriptor yet to be parsed.
ConstexprStringView remainder;
constexpr bool has_token() const {
return token.size() > 0u;
}
constexpr bool has_remainder() const {
return remainder.size() > 0u;
}
constexpr JniDescriptorNode as_node() const {
X_ASSERT(has_token());
return {token};
}
};
// Parse a single type descriptor out of a function type descriptor substring,
// and return the token and the remainder string.
//
// If parsing fails (i.e. illegal syntax), then:
// parses are fatal -> assertion is triggered (default behavior),
// parses are nonfatal -> returns nullopt (test behavior).
constexpr ConstexprOptional<ParseTypeDescriptorResult>
ParseSingleTypeDescriptor(ConstexprStringView single_type,
bool allow_void = false) {
constexpr NullConstexprOptional kUnreachable = {};
// Nothing else left.
if (single_type.size() == 0) {
return ParseTypeDescriptorResult{};
}
ConstexprStringView token;
ConstexprStringView remainder = single_type.substr(/*start*/1u);
char c = single_type[0];
PARSE_ASSERT(IsValidJniDescriptorStart(c));
enum State {
kSingleCharacter,
kArray,
kObject
};
State state = kSingleCharacter;
// Parse the first character to figure out if we should parse the rest.
switch (c) {
case '!': {
constexpr bool fast_jni_is_deprecated = false;
PARSE_ASSERT(fast_jni_is_deprecated);
break;
}
case 'V':
if (!allow_void) {
constexpr bool void_type_descriptor_only_allowed_in_return_type = false;
PARSE_ASSERT(void_type_descriptor_only_allowed_in_return_type);
}
[[clang::fallthrough]];
case 'Z':
case 'B':
case 'C':
case 'S':
case 'I':
case 'J':
case 'F':
case 'D':
token = single_type.substr(/*start*/0u, /*len*/1u);
break;
case 'L':
state = kObject;
break;
case '[':
state = kArray;
break;
default: {
// See JNI Chapter 3: Type Signatures.
PARSE_FAILURE("Expected a valid type descriptor character.");
return kUnreachable;
}
}
// Possibly parse an arbitary-long remainder substring.
switch (state) {
case kSingleCharacter:
return {{token, remainder}};
case kArray: {
// Recursively parse the array component, as it's just any non-void type descriptor.
ConstexprOptional<ParseTypeDescriptorResult>
maybe_res = ParseSingleTypeDescriptor(remainder, /*allow_void*/false);
PARSE_ASSERT(maybe_res); // Downstream parsing has asserted, bail out.
ParseTypeDescriptorResult res = maybe_res.value();
// Reject illegal array type descriptors such as "]".
PARSE_ASSERT_MSG(res.has_token(), "All array types must follow by their component type (e.g. ']I', ']]Z', etc. ");
token = single_type.substr(/*start*/0u, res.token.size() + 1u);
return {{token, res.remainder}};
}
case kObject: {
// Parse the fully qualified class, e.g. Lfoo/bar/baz;
// Note checking that each part of the class name is a valid class identifier
// is too complicated (JLS 3.8).
// This simple check simply scans until the next ';'.
bool found_semicolon = false;
size_t semicolon_len = 0;
for (size_t i = 0; i < single_type.size(); ++i) {
switch (single_type[i]) {
case ')':
case '(':
case '[':
PARSE_FAILURE("Object identifiers cannot have ()[ in them.");
break;
}
if (single_type[i] == ';') {
semicolon_len = i + 1;
found_semicolon = true;
break;
}
}
PARSE_ASSERT(found_semicolon);
token = single_type.substr(/*start*/0u, semicolon_len);
remainder = single_type.substr(/*start*/semicolon_len);
bool class_name_is_empty = token.size() <= 2u; // e.g. "L;"
PARSE_ASSERT(!class_name_is_empty);
return {{token, remainder}};
}
default:
X_ASSERT(false);
}
X_ASSERT(false);
return kUnreachable;
}
// Abstract data type to represent container for Ret(Args,...).
template<typename T, size_t kMaxSize>
struct FunctionSignatureDescriptor {
ConstexprVector<T, kMaxSize> args;
T ret;
static constexpr size_t max_size = kMaxSize;
};
template<typename T, size_t kMaxSize>
inline std::ostream& operator<<(
std::ostream& os,
const FunctionSignatureDescriptor<T, kMaxSize>& signature) {
size_t count = 0;
os << "args={";
for (auto& arg : signature.args) {
os << arg;
if (count != signature.args.size() - 1) {
os << ",";
}
++count;
}
os << "}, ret=";
os << signature.ret;
return os;
}
// Ret(Args...) of JniDescriptorNode.
template<size_t kMaxSize>
using JniSignatureDescriptor = FunctionSignatureDescriptor<JniDescriptorNode,
kMaxSize>;
// Parse a JNI function signature descriptor into a JniSignatureDescriptor.
//
// If parsing fails (i.e. illegal syntax), then:
// parses are fatal -> assertion is triggered (default behavior),
// parses are nonfatal -> returns nullopt (test behavior).
template<size_t kMaxSize>
constexpr ConstexprOptional<JniSignatureDescriptor<kMaxSize>>
ParseSignatureAsList(ConstexprStringView signature) {
// The list of JNI descriptors cannot possibly exceed the number of characters
// in the JNI string literal. We leverage this to give an upper bound of the strlen.
// This is a bit wasteful but in constexpr there *must* be a fixed upper size for data structures.
ConstexprVector<JniDescriptorNode, kMaxSize> jni_desc_node_list;
JniDescriptorNode return_jni_desc;
enum State {
kInitial = 0,
kParsingParameters = 1,
kParsingReturnType = 2,
kCompleted = 3,
};
State state = kInitial;
while (!signature.empty()) {
switch (state) {
case kInitial: {
char c = signature[0];
PARSE_ASSERT_MSG(c == '(',
"First character of a JNI signature must be a '('");
state = kParsingParameters;
signature = signature.substr(/*start*/1u);
break;
}
case kParsingParameters: {
char c = signature[0];
if (c == ')') {
state = kParsingReturnType;
signature = signature.substr(/*start*/1u);
break;
}
ConstexprOptional<ParseTypeDescriptorResult>
res = ParseSingleTypeDescriptor(signature, /*allow_void*/false);
PARSE_ASSERT(res);
jni_desc_node_list.push_back(res->as_node());
signature = res->remainder;
break;
}
case kParsingReturnType: {
ConstexprOptional<ParseTypeDescriptorResult>
res = ParseSingleTypeDescriptor(signature, /*allow_void*/true);
PARSE_ASSERT(res);
return_jni_desc = res->as_node();
signature = res->remainder;
state = kCompleted;
break;
}
default: {
// e.g. "()VI" is illegal because the V terminates the signature.
PARSE_FAILURE("Signature had left over tokens after parsing return type");
break;
}
}
}
switch (state) {
case kCompleted:
// Everything is ok.
break;
case kParsingParameters:
PARSE_FAILURE("Signature was missing ')'");
break;
case kParsingReturnType:
PARSE_FAILURE("Missing return type");
case kInitial:
PARSE_FAILURE("Cannot have an empty signature");
default:
X_ASSERT(false);
}
return {{jni_desc_node_list, return_jni_desc}};
}
// What kind of JNI does this type belong to?
enum NativeKind {
kNotJni, // Illegal parameter used inside of a function type.
kNormalJniCallingConventionParameter,
kNormalNative,
kFastNative, // Also valid in normal.
kCriticalNative, // Also valid in fast/normal.
};
// Is this type final, i.e. it cannot be subtyped?
enum TypeFinal {
kNotFinal,
kFinal // e.g. any primitive or any "final" class such as String.
};
// What position is the JNI type allowed to be in?
// Ignored when in a CriticalNative context.
enum NativePositionAllowed {
kNotAnyPosition,
kReturnPosition,
kZerothPosition,
kFirstOrLaterPosition,
kSecondOrLaterPosition,
};
constexpr NativePositionAllowed ConvertPositionToAllowed(size_t position) {
switch (position) {
case 0:
return kZerothPosition;
case 1:
return kFirstOrLaterPosition;
default:
return kSecondOrLaterPosition;
}
}
// Type traits for a JNI parameter type. See below for specializations.
template<typename T>
struct jni_type_trait {
static constexpr NativeKind native_kind = kNotJni;
static constexpr const char type_descriptor[] = "(illegal)";
static constexpr NativePositionAllowed position_allowed = kNotAnyPosition;
static constexpr TypeFinal type_finality = kNotFinal;
static constexpr const char type_name[] = "(illegal)";
};
// Access the jni_type_trait<T> from a non-templated constexpr function.
// Identical non-static fields to jni_type_trait, see Reify().
struct ReifiedJniTypeTrait {
NativeKind native_kind;
ConstexprStringView type_descriptor;
NativePositionAllowed position_allowed;
TypeFinal type_finality;
ConstexprStringView type_name;
template<typename T>
static constexpr ReifiedJniTypeTrait Reify() {
// This should perhaps be called 'Type Erasure' except we don't use virtuals,
// so it's not quite the same idiom.
using TR = jni_type_trait<T>;
return {TR::native_kind,
TR::type_descriptor,
TR::position_allowed,
TR::type_finality,
TR::type_name};
}
// Find the most similar ReifiedJniTypeTrait corresponding to the type descriptor.
//
// Any type can be found by using the exact canonical type descriptor as listed
// in the jni type traits definitions.
//
// Non-final JNI types have limited support for inexact similarity:
// [[* | [L* -> jobjectArray
// L* -> jobject
//
// Otherwise return a nullopt.
static constexpr ConstexprOptional<ReifiedJniTypeTrait>
MostSimilarTypeDescriptor(ConstexprStringView type_descriptor);
};
constexpr bool
operator==(const ReifiedJniTypeTrait& lhs, const ReifiedJniTypeTrait& rhs) {
return lhs.native_kind == rhs.native_kind
&& rhs.type_descriptor == lhs.type_descriptor &&
lhs.position_allowed == rhs.position_allowed
&& rhs.type_finality == lhs.type_finality &&
lhs.type_name == rhs.type_name;
}
inline std::ostream& operator<<(std::ostream& os, const ReifiedJniTypeTrait& rjtt) {
// os << "ReifiedJniTypeTrait<" << rjft.type_name << ">";
os << rjtt.type_name;
return os;
}
// Template specialization for any JNI typedefs.
#define JNI_TYPE_TRAIT(jtype, the_type_descriptor, the_native_kind, the_type_finality, the_position) \
template <> \
struct jni_type_trait< jtype > { \
static constexpr NativeKind native_kind = the_native_kind; \
static constexpr const char type_descriptor[] = the_type_descriptor; \
static constexpr NativePositionAllowed position_allowed = the_position; \
static constexpr TypeFinal type_finality = the_type_finality; \
static constexpr const char type_name[] = #jtype; \
};
#define DEFINE_JNI_TYPE_TRAIT(TYPE_TRAIT_FN) \
TYPE_TRAIT_FN(jboolean, "Z", kCriticalNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jbyte, "B", kCriticalNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jchar, "C", kCriticalNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jshort, "S", kCriticalNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jint, "I", kCriticalNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jlong, "J", kCriticalNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jfloat, "F", kCriticalNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jdouble, "D", kCriticalNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jobject, "Ljava/lang/Object;", kFastNative, kNotFinal, kFirstOrLaterPosition) \
TYPE_TRAIT_FN(jclass, "Ljava/lang/Class;", kFastNative, kFinal, kFirstOrLaterPosition) \
TYPE_TRAIT_FN(jstring, "Ljava/lang/String;", kFastNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jarray, "Ljava/lang/Object;", kFastNative, kNotFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jobjectArray, "[Ljava/lang/Object;", kFastNative, kNotFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jbooleanArray, "[Z", kFastNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jbyteArray, "[B", kFastNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jcharArray, "[C", kFastNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jshortArray, "[S", kFastNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jintArray, "[I", kFastNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jlongArray, "[J", kFastNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jfloatArray, "[F", kFastNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jdoubleArray, "[D", kFastNative, kFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(jthrowable, "Ljava/lang/Throwable;", kFastNative, kNotFinal, kSecondOrLaterPosition) \
TYPE_TRAIT_FN(JNIEnv*, "", kNormalJniCallingConventionParameter, kFinal, kZerothPosition) \
TYPE_TRAIT_FN(void, "V", kCriticalNative, kFinal, kReturnPosition) \
DEFINE_JNI_TYPE_TRAIT(JNI_TYPE_TRAIT)
// See ReifiedJniTypeTrait for documentation.
constexpr ConstexprOptional<ReifiedJniTypeTrait>
ReifiedJniTypeTrait::MostSimilarTypeDescriptor(ConstexprStringView type_descriptor) {
#define MATCH_EXACT_TYPE_DESCRIPTOR_FN(type, type_desc, native_kind, ...) \
if (type_descriptor == type_desc && native_kind >= kNormalNative) { \
return { Reify<type>() }; \
}
// Attempt to look up by the precise type match first.
DEFINE_JNI_TYPE_TRAIT(MATCH_EXACT_TYPE_DESCRIPTOR_FN);
// Otherwise, we need to do an imprecise match:
char shorty = type_descriptor.size() >= 1 ? type_descriptor[0] : '\0';
if (shorty == 'L') {
// Something more specific like Ljava/lang/Throwable, string, etc
// is already matched by the macro-expanded conditions above.
return {Reify<jobject>()};
} else if (type_descriptor.size() >= 2) {
auto shorty_shorty = type_descriptor.substr(/*start*/0, /*size*/2u);
if (shorty_shorty == "[[" || shorty_shorty == "[L") {
// JNI arrays are covariant, so any type T[] (T!=primitive) is castable to Object[].
return {Reify<jobjectArray>()};
}
}
// To handle completely invalid values.
return NullConstexprOptional{};
}
// Is this actual JNI position consistent with the expected position?
constexpr bool IsValidJniParameterPosition(NativeKind native_kind,
NativePositionAllowed position,
NativePositionAllowed expected_position) {
X_ASSERT(expected_position != kNotAnyPosition);
if (native_kind == kCriticalNative) {
// CriticalNatives ignore positions since the first 2 special
// parameters are stripped.
return true;
}
// Is this a return-only position?
if (expected_position == kReturnPosition) {
if (position != kReturnPosition) {
// void can only be in the return position.
return false;
}
// Don't do the other non-return position checks for a return-only position.
return true;
}
// JNIEnv* can only be in the first spot.
if (position == kZerothPosition && expected_position != kZerothPosition) {
return false;
// jobject, jclass can be 1st or anywhere afterwards.
} else if (position == kFirstOrLaterPosition && expected_position != kFirstOrLaterPosition) {
return false;
// All other parameters must be in 2nd+ spot, or in the return type.
} else if (position == kSecondOrLaterPosition || position == kReturnPosition) {
if (expected_position != kFirstOrLaterPosition && expected_position != kSecondOrLaterPosition) {
return false;
}
}
return true;
}
// Check if a jni parameter type is valid given its position and native_kind.
template <typename T>
constexpr bool IsValidJniParameter(NativeKind native_kind, NativePositionAllowed position) {
// const,volatile does not affect JNI compatibility since it does not change ABI.
using expected_trait = jni_type_trait<typename std::remove_cv<T>::type>;
NativeKind expected_native_kind = expected_trait::native_kind;
// Most types 'T' are not valid for JNI.
if (expected_native_kind == NativeKind::kNotJni) {
return false;
}
// The rest of the types might be valid, but it depends on the context (native_kind)
// and also on their position within the parameters.
// Position-check first.
NativePositionAllowed expected_position = expected_trait::position_allowed;
if (!IsValidJniParameterPosition(native_kind, position, expected_position)) {
return false;
}
// Ensure the type appropriate is for the native kind.
if (expected_native_kind == kNormalJniCallingConventionParameter) {
// It's always wrong to use a JNIEnv* anywhere but the 0th spot.
if (native_kind == kCriticalNative) {
// CriticalNative does not allow using a JNIEnv*.
return false;
}
return true; // OK: JniEnv* used in 0th position.
} else if (expected_native_kind == kCriticalNative) {
// CriticalNative arguments are always valid JNI types anywhere used.
return true;
} else if (native_kind == kCriticalNative) {
// The expected_native_kind was non-critical but we are in a critical context.
// Illegal type.
return false;
}
// Everything else is fine, e.g. fast/normal native + fast/normal native parameters.
return true;
}
// Is there sufficient number of parameters given the kind of JNI that it is?
constexpr bool IsJniParameterCountValid(NativeKind native_kind, size_t count) {
if (native_kind == kNormalNative || native_kind == kFastNative) {
return count >= 2u;
} else if (native_kind == kCriticalNative) {
return true;
}
constexpr bool invalid_parameter = false;
X_ASSERT(invalid_parameter);
return false;
}
// Basic template interface. See below for partial specializations.
//
// Each instantiation will have a 'value' field that determines whether or not
// all of the Args are valid JNI arguments given their native_kind.
template<NativeKind native_kind, size_t position, typename ... Args>
struct is_valid_jni_argument_type {
// static constexpr bool value = ?;
};
template<NativeKind native_kind, size_t position>
struct is_valid_jni_argument_type<native_kind, position> {
static constexpr bool value = true;
};
template<NativeKind native_kind, size_t position, typename T>
struct is_valid_jni_argument_type<native_kind, position, T> {
static constexpr bool value =
IsValidJniParameter<T>(native_kind, ConvertPositionToAllowed(position));
};
template<NativeKind native_kind, size_t position, typename T, typename ... Args>
struct is_valid_jni_argument_type<native_kind, position, T, Args...> {
static constexpr bool value =
IsValidJniParameter<T>(native_kind, ConvertPositionToAllowed(position))
&& is_valid_jni_argument_type<native_kind,
position + 1,
Args...>::value;
};
// This helper is required to decompose the function type into a list of arg types.
template<NativeKind native_kind, typename T, T* fn>
struct is_valid_jni_function_type_helper;
template<NativeKind native_kind, typename R, typename ... Args, R (*fn)(Args...)>
struct is_valid_jni_function_type_helper<native_kind, R(Args...), fn> {
static constexpr bool value =
IsJniParameterCountValid(native_kind, sizeof...(Args))
&& IsValidJniParameter<R>(native_kind, kReturnPosition)
&& is_valid_jni_argument_type<native_kind, /*position*/
0,
Args...>::value;
};
// Is this function type 'T' a valid C++ function type given the native_kind?
template<NativeKind native_kind, typename T, T* fn>
constexpr bool IsValidJniFunctionType() {
return is_valid_jni_function_type_helper<native_kind, T, fn>::value;
// TODO: we could replace template metaprogramming with constexpr by
// using FunctionTypeMetafunction.
}
// Many parts of std::array is not constexpr until C++17.
template<typename T, size_t N>
struct ConstexprArray {
// Intentionally public to conform to std::array.
// This means all constructors are implicit.
// *NOT* meant to be used directly, use the below functions instead.
//
// The reason std::array has it is to support direct-list-initialization,
// e.g. "ConstexprArray<T, sz>{T{...}, T{...}, T{...}, ...};"
//
// Note that otherwise this would need a very complicated variadic
// argument constructor to only support list of Ts.
T _array[N];
constexpr size_t size() const {
return N;
}
using iterator = T*;
using const_iterator = const T*;
constexpr iterator begin() {
return &_array[0];
}
constexpr iterator end() {
return &_array[N];
}
constexpr const_iterator begin() const {
return &_array[0];
}
constexpr const_iterator end() const {
return &_array[N];
}
constexpr T& operator[](size_t i) {
return _array[i];
}
constexpr const T& operator[](size_t i) const {
return _array[i];
}
};
// Why do we need this?
// auto x = {1,2,3} creates an initializer_list,
// but they can't be returned because it contains pointers to temporaries.
// auto x[] = {1,2,3} doesn't even work because auto for arrays is not supported.
//
// an alternative would be to pull up std::common_t directly into the call site
// std::common_type_t<Args...> array[] = {1,2,3}
// but that's even more cludgier.
//
// As the other "stdlib-wannabe" functions, it's weaker than the library
// fundamentals std::make_array but good enough for our use.
template<typename... Args>
constexpr auto MakeArray(Args&& ... args) {
return ConstexprArray<typename std::common_type<Args...>::type,
sizeof...(Args)>{args...};
}
// See below.
template<typename T, T* fn>
struct FunctionTypeMetafunction {
};
// Enables the "map" operation over the function component types.
template<typename R, typename ... Args, R (*fn)(Args...)>
struct FunctionTypeMetafunction<R(Args...), fn> {
// Count how many arguments there are, and add 1 for the return type.
static constexpr size_t
count = sizeof...(Args) + 1u; // args and return type.
// Return an array where the metafunction 'Func' has been applied
// to every argument type. The metafunction must be returning a common type.
template<template<typename Arg> class Func>
static constexpr auto map_args() {
return map_args_impl<Func>(holder < Args > {}...);
}
// Apply the metafunction 'Func' over the return type.
template<template<typename Ret> class Func>
static constexpr auto map_return() {
return Func<R>{}();
}
private:
template<typename T>
struct holder {
};
template<template<typename Arg> class Func, typename Arg0, typename... ArgsRest>
static constexpr auto map_args_impl(holder<Arg0>, holder<ArgsRest>...) {
// One does not simply call MakeArray with 0 template arguments...
auto array = MakeArray(
Func<Args>{}()...
);
return array;
}
template<template<typename Arg> class Func>
static constexpr auto map_args_impl() {
// This overload provides support for MakeArray() with 0 arguments.
using ComponentType = decltype(Func<void>{}());
return ConstexprArray<ComponentType, /*size*/0u>{};
}
};
// Apply ReifiedJniTypeTrait::Reify<T> for every function component type.
template<typename T>
struct ReifyJniTypeMetafunction {
constexpr ReifiedJniTypeTrait operator()() const {
auto res = ReifiedJniTypeTrait::Reify<T>();
X_ASSERT(res.native_kind != kNotJni);
return res;
}
};
// Ret(Args...) where every component is a ReifiedJniTypeTrait.
template<size_t kMaxSize>
using ReifiedJniSignature = FunctionSignatureDescriptor<ReifiedJniTypeTrait,
kMaxSize>;
// Attempts to convert the function type T into a list of ReifiedJniTypeTraits
// that correspond to the function components.
//
// If conversion fails (i.e. non-jni compatible types), then:
// parses are fatal -> assertion is triggered (default behavior),
// parses are nonfatal -> returns nullopt (test behavior).
template <NativeKind native_kind,
typename T,
T* fn,
size_t kMaxSize = FunctionTypeMetafunction<T, fn>::count>
constexpr ConstexprOptional<ReifiedJniSignature<kMaxSize>>
MaybeMakeReifiedJniSignature() {
if (!IsValidJniFunctionType<native_kind, T, fn>()) {
PARSE_FAILURE("The function signature has one or more types incompatible with JNI.");
}
ReifiedJniTypeTrait return_jni_trait =
FunctionTypeMetafunction<T,
fn>::template map_return<ReifyJniTypeMetafunction>();
constexpr size_t
kSkipArgumentPrefix = (native_kind != kCriticalNative) ? 2u : 0u;
ConstexprVector<ReifiedJniTypeTrait, kMaxSize> args;
auto args_list =
FunctionTypeMetafunction<T, fn>::template map_args<ReifyJniTypeMetafunction>();
size_t args_index = 0;
for (auto& arg : args_list) {
// Ignore the 'JNIEnv*, jobject' / 'JNIEnv*, jclass' prefix,
// as its not part of the function descriptor string.
if (args_index >= kSkipArgumentPrefix) {
args.push_back(arg);
}
++args_index;
}
return {{args, return_jni_trait}};
}
#define COMPARE_DESCRIPTOR_CHECK(expr) if (!(expr)) return false
#define COMPARE_DESCRIPTOR_FAILURE_MSG(msg) if ((true)) return false
// Compares a user-defined JNI descriptor (of a single argument or return value)
// to a reified jni type trait that was derived from the C++ function type.
//
// If comparison fails (i.e. non-jni compatible types), then:
// parses are fatal -> assertion is triggered (default behavior),
// parses are nonfatal -> returns false (test behavior).
constexpr bool
CompareJniDescriptorNodeErased(JniDescriptorNode user_defined_descriptor,
ReifiedJniTypeTrait derived) {
ConstexprOptional<ReifiedJniTypeTrait> user_reified_opt =
ReifiedJniTypeTrait::MostSimilarTypeDescriptor(user_defined_descriptor.longy);
if (!user_reified_opt.has_value()) {
COMPARE_DESCRIPTOR_FAILURE_MSG(
"Could not find any JNI C++ type corresponding to the type descriptor");
}
char user_shorty = user_defined_descriptor.longy.size() > 0 ?
user_defined_descriptor.longy[0] :
'\0';
ReifiedJniTypeTrait user = user_reified_opt.value();
if (user == derived) {
// If we had a similar match, immediately return success.
return true;
} else if (derived.type_name == "jthrowable") {
if (user_shorty == 'L') {
// Weakly allow any objects to correspond to a jthrowable.
// We do not know the managed type system so we have to be permissive here.
return true;
} else {
COMPARE_DESCRIPTOR_FAILURE_MSG(
"jthrowable must correspond to an object type descriptor");
}
} else if (derived.type_name == "jarray") {
if (user_shorty == '[') {
// a jarray is the base type for all other array types. Allow.
return true;
} else {
// Ljava/lang/Object; is the root for all array types.
// Already handled above in 'if user == derived'.
COMPARE_DESCRIPTOR_FAILURE_MSG(
"jarray must correspond to array type descriptor");
}
}
// Otherwise, the comparison has failed and the rest of this is only to
// pick the most appropriate error message.
//
// Note: A weaker form of comparison would allow matching 'Ljava/lang/String;'
// against 'jobject', etc. However the policy choice here is to enforce the strictest
// comparison that we can to utilize the type system to its fullest.
if (derived.type_finality == kFinal || user.type_finality == kFinal) {
// Final types, e.g. "I", "Ljava/lang/String;" etc must match exactly
// the C++ jni descriptor string ('I' -> jint, 'Ljava/lang/String;' -> jstring).
COMPARE_DESCRIPTOR_FAILURE_MSG(
"The JNI descriptor string must be the exact type equivalent of the "
"C++ function signature.");
} else if (user_shorty == '[') {
COMPARE_DESCRIPTOR_FAILURE_MSG(
"The array JNI descriptor must correspond to j${type}Array or jarray");
} else if (user_shorty == 'L') {
COMPARE_DESCRIPTOR_FAILURE_MSG(
"The object JNI descriptor must correspond to jobject.");
} else {
X_ASSERT(false); // We should never get here, but either way this means the types did not match
COMPARE_DESCRIPTOR_FAILURE_MSG(
"The JNI type descriptor string does not correspond to the C++ JNI type.");
}
}
// Matches a user-defined JNI function descriptor against the C++ function type.
//
// If matches fails, then:
// parses are fatal -> assertion is triggered (default behavior),
// parses are nonfatal -> returns false (test behavior).
template<NativeKind native_kind, typename T, T* fn, size_t kMaxSize>
constexpr bool
MatchJniDescriptorWithFunctionType(ConstexprStringView user_function_descriptor) {
constexpr size_t kReifiedMaxSize = FunctionTypeMetafunction<T, fn>::count;
ConstexprOptional<ReifiedJniSignature<kReifiedMaxSize>>
reified_signature_opt =
MaybeMakeReifiedJniSignature<native_kind, T, fn>();
if (!reified_signature_opt) {
// Assertion handling done by MaybeMakeReifiedJniSignature.
return false;
}
ConstexprOptional<JniSignatureDescriptor<kMaxSize>> user_jni_sig_desc_opt =
ParseSignatureAsList<kMaxSize>(user_function_descriptor);
if (!user_jni_sig_desc_opt) {
// Assertion handling done by ParseSignatureAsList.
return false;
}
ReifiedJniSignature<kReifiedMaxSize>
reified_signature = reified_signature_opt.value();
JniSignatureDescriptor<kMaxSize>
user_jni_sig_desc = user_jni_sig_desc_opt.value();
if (reified_signature.args.size() != user_jni_sig_desc.args.size()) {
COMPARE_DESCRIPTOR_FAILURE_MSG(
"Number of parameters in JNI descriptor string"
"did not match number of parameters in C++ function type");
} else if (!CompareJniDescriptorNodeErased(user_jni_sig_desc.ret,
reified_signature.ret)) {
// Assertion handling done by CompareJniDescriptorNodeErased.
return false;
} else {
for (size_t i = 0; i < user_jni_sig_desc.args.size(); ++i) {
if (!CompareJniDescriptorNodeErased(user_jni_sig_desc.args[i],
reified_signature.args[i])) {
// Assertion handling done by CompareJniDescriptorNodeErased.
return false;
}
}
}
return true;
}
// Supports inferring the JNI function descriptor string from the C++
// function type when all type components are final.
template<NativeKind native_kind, typename T, T* fn>
struct InferJniDescriptor {
static constexpr size_t kMaxSize = FunctionTypeMetafunction<T, fn>::count;
// Convert the C++ function type into a JniSignatureDescriptor which holds
// the canonical (according to jni_traits) descriptors for each component.
// The C++ type -> JNI mapping must be nonambiguous (see jni_macros.h for exact rules).
//
// If conversion fails (i.e. C++ signatures is illegal for JNI, or the types are ambiguous):
// if parsing is fatal -> assertion failure (default behavior)
// if parsing is nonfatal -> returns nullopt (test behavior).
static constexpr ConstexprOptional<JniSignatureDescriptor<kMaxSize>> FromFunctionType() {
constexpr size_t kReifiedMaxSize = kMaxSize;
ConstexprOptional<ReifiedJniSignature<kReifiedMaxSize>>
reified_signature_opt =
MaybeMakeReifiedJniSignature<native_kind, T, fn>();
if (!reified_signature_opt) {
// Assertion handling done by MaybeMakeReifiedJniSignature.
return NullConstexprOptional{};
}
ReifiedJniSignature<kReifiedMaxSize>
reified_signature = reified_signature_opt.value();
JniSignatureDescriptor<kReifiedMaxSize> signature_descriptor;
if (reified_signature.ret.type_finality != kFinal) {
// e.g. jint, jfloatArray, jstring, jclass are ok. jobject, jthrowable, jarray are not.
PARSE_FAILURE("Bad return type. Only unambigous (final) types can be used to infer a signature."); // NOLINT
}
signature_descriptor.ret =
JniDescriptorNode{reified_signature.ret.type_descriptor};
for (size_t i = 0; i < reified_signature.args.size(); ++i) {
const ReifiedJniTypeTrait& arg_trait = reified_signature.args[i];
if (arg_trait.type_finality != kFinal) {
PARSE_FAILURE("Bad parameter type. Only unambigous (final) types can be used to infer a signature."); // NOLINT
}
signature_descriptor.args.push_back(JniDescriptorNode{
arg_trait.type_descriptor});
}
return {signature_descriptor};
}
// Calculate the exact string size that the JNI descriptor will be
// at runtime.
//
// Without this we cannot allocate enough space within static storage
// to fit the compile-time evaluated string.
static constexpr size_t CalculateStringSize() {
ConstexprOptional<JniSignatureDescriptor<kMaxSize>>
signature_descriptor_opt =
FromFunctionType();
if (!signature_descriptor_opt) {
// Assertion handling done by FromFunctionType.
return 0u;
}
JniSignatureDescriptor<kMaxSize> signature_descriptor =
signature_descriptor_opt.value();
size_t acc_size = 1u; // All sigs start with '('.
// Now add every parameter.
for (size_t j = 0; j < signature_descriptor.args.size(); ++j) {
const JniDescriptorNode& arg_descriptor = signature_descriptor.args[j];
// for (const JniDescriptorNode& arg_descriptor : signature_descriptor.args) {
acc_size += arg_descriptor.longy.size();
}
acc_size += 1u; // Add space for ')'.
// Add space for the return value.
acc_size += signature_descriptor.ret.longy.size();
return acc_size;
}
static constexpr size_t kMaxStringSize = CalculateStringSize();
using ConstexprStringDescriptorType = ConstexprArray<char,
kMaxStringSize + 1>;
// Convert the JniSignatureDescriptor we get in FromFunctionType()
// into a flat constexpr char array.
//
// This is done by repeated string concatenation at compile-time.
static constexpr ConstexprStringDescriptorType GetString() {
ConstexprStringDescriptorType c_str{};
ConstexprOptional<JniSignatureDescriptor<kMaxSize>>
signature_descriptor_opt =
FromFunctionType();
if (!signature_descriptor_opt.has_value()) {
// Assertion handling done by FromFunctionType.
c_str[0] = '\0';
return c_str;
}
JniSignatureDescriptor<kMaxSize> signature_descriptor =
signature_descriptor_opt.value();
size_t pos = 0u;
c_str[pos++] = '(';
// Copy all parameter descriptors.
for (size_t j = 0; j < signature_descriptor.args.size(); ++j) {
const JniDescriptorNode& arg_descriptor = signature_descriptor.args[j];
ConstexprStringView longy = arg_descriptor.longy;
for (size_t i = 0; i < longy.size(); ++i) {
c_str[pos++] = longy[i];
}
}
c_str[pos++] = ')';
// Copy return descriptor.
ConstexprStringView longy = signature_descriptor.ret.longy;
for (size_t i = 0; i < longy.size(); ++i) {
c_str[pos++] = longy[i];
}
X_ASSERT(pos == kMaxStringSize);
c_str[pos] = '\0';
return c_str;
}
// Turn a pure constexpr string into one that can be accessed at non-constexpr
// time. Note that the 'static constexpr' storage must be in the scope of a
// function (prior to C++17) to avoid linking errors.
static const char* GetStringAtRuntime() {
static constexpr ConstexprStringDescriptorType str = GetString();
return &str[0];
}
};
// Expression to return JNINativeMethod, performs checking on signature+fn.
#define MAKE_CHECKED_JNI_NATIVE_METHOD(native_kind, name_, signature_, fn) \
([]() { \
using namespace nativehelper::detail; /* NOLINT(google-build-using-namespace) */ \
static_assert( \
MatchJniDescriptorWithFunctionType<native_kind, \
decltype(fn), \
fn, \
sizeof(signature_)>(signature_),\
"JNI signature doesn't match C++ function type."); \
/* Suppress implicit cast warnings by explicitly casting. */ \
return JNINativeMethod { \
const_cast<decltype(JNINativeMethod::name)>(name_), \
const_cast<decltype(JNINativeMethod::signature)>(signature_), \
reinterpret_cast<void*>(&(fn))}; \
})()
// Expression to return JNINativeMethod, infers signature from fn.
#define MAKE_INFERRED_JNI_NATIVE_METHOD(native_kind, name_, fn) \
([]() { \
using namespace nativehelper::detail; /* NOLINT(google-build-using-namespace) */ \
/* Suppress implicit cast warnings by explicitly casting. */ \
return JNINativeMethod { \
const_cast<decltype(JNINativeMethod::name)>(name_), \
const_cast<decltype(JNINativeMethod::signature)>( \
InferJniDescriptor<native_kind, \
decltype(fn), \
fn>::GetStringAtRuntime()), \
reinterpret_cast<void*>(&(fn))}; \
})()
} // namespace detail
} // namespace nativehelper
|