File: debuggerd_handler.cpp

package info (click to toggle)
android-platform-tools 34.0.5-12
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 150,900 kB
  • sloc: cpp: 805,786; java: 293,500; ansic: 128,288; xml: 127,491; python: 41,481; sh: 14,245; javascript: 9,665; cs: 3,846; asm: 2,049; makefile: 1,917; yacc: 440; awk: 368; ruby: 183; sql: 140; perl: 88; lex: 67
file content (810 lines) | stat: -rw-r--r-- 32,036 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
/*
 * Copyright 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "debuggerd/handler.h"

#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <linux/futex.h>
#include <pthread.h>
#include <sched.h>
#include <signal.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <sys/uio.h>
#include <sys/un.h>
#include <sys/wait.h>
#include <unistd.h>

#include <android-base/macros.h>
#include <android-base/parsebool.h>
#include <android-base/properties.h>
#include <android-base/unique_fd.h>
#include <async_safe/log.h>
#include <bionic/reserved_signals.h>

#include <libdebuggerd/utility.h>

#include "dump_type.h"
#include "protocol.h"

#include "handler/fallback.h"

using ::android::base::ParseBool;
using ::android::base::ParseBoolResult;
using ::android::base::Pipe;

// We muck with our fds in a 'thread' that doesn't share the same fd table.
// Close fds in that thread with a raw close syscall instead of going through libc.
struct FdsanBypassCloser {
  static void Close(int fd) {
    syscall(__NR_close, fd);
  }
};

using unique_fd = android::base::unique_fd_impl<FdsanBypassCloser>;

// see man(2) prctl, specifically the section about PR_GET_NAME
#define MAX_TASK_NAME_LEN (16)

#if defined(__LP64__)
#define CRASH_DUMP_NAME "crash_dump64"
#else
#define CRASH_DUMP_NAME "crash_dump32"
#endif

#define CRASH_DUMP_PATH "/apex/com.android.runtime/bin/" CRASH_DUMP_NAME

// Wrappers that directly invoke the respective syscalls, in case the cached values are invalid.
#pragma GCC poison getpid gettid
static pid_t __getpid() {
  return syscall(__NR_getpid);
}

static pid_t __gettid() {
  return syscall(__NR_gettid);
}

static bool property_parse_bool(const char* name) {
  const prop_info* pi = __system_property_find(name);
  if (!pi) return false;
  bool cookie = false;
  __system_property_read_callback(
      pi,
      [](void* cookie, const char*, const char* value, uint32_t) {
        *reinterpret_cast<bool*>(cookie) = ParseBool(value) == ParseBoolResult::kTrue;
      },
      &cookie);
  return cookie;
}

static bool is_permissive_mte() {
  // Environment variable for testing or local use from shell.
  char* permissive_env = getenv("MTE_PERMISSIVE");
  char process_sysprop_name[512];
  async_safe_format_buffer(process_sysprop_name, sizeof(process_sysprop_name),
                           "persist.device_config.memory_safety_native.permissive.process.%s",
                           getprogname());
  // DO NOT REPLACE this with GetBoolProperty. That uses std::string which allocates, so it is
  // not async-safe (and this functiong gets used in a signal handler).
  return property_parse_bool("persist.sys.mte.permissive") ||
         property_parse_bool("persist.device_config.memory_safety_native.permissive.default") ||
         property_parse_bool(process_sysprop_name) ||
         (permissive_env && ParseBool(permissive_env) == ParseBoolResult::kTrue);
}

static inline void futex_wait(volatile void* ftx, int value) {
  syscall(__NR_futex, ftx, FUTEX_WAIT, value, nullptr, nullptr, 0);
}

class ErrnoRestorer {
 public:
  ErrnoRestorer() : saved_errno_(errno) {
  }

  ~ErrnoRestorer() {
    errno = saved_errno_;
  }

 private:
  int saved_errno_;
};

extern "C" void* android_fdsan_get_fd_table();
extern "C" void debuggerd_fallback_handler(siginfo_t*, ucontext_t*, void*);

static debuggerd_callbacks_t g_callbacks;

// Mutex to ensure only one crashing thread dumps itself.
static pthread_mutex_t crash_mutex = PTHREAD_MUTEX_INITIALIZER;

// Don't use async_safe_fatal because it exits via abort, which might put us back into
// a signal handler.
static void __noreturn __printflike(1, 2) fatal(const char* fmt, ...) {
  va_list args;
  va_start(args, fmt);
  async_safe_format_log_va_list(ANDROID_LOG_FATAL, "libc", fmt, args);
  _exit(1);
}

static void __noreturn __printflike(1, 2) fatal_errno(const char* fmt, ...) {
  int err = errno;
  va_list args;
  va_start(args, fmt);

  char buf[256];
  async_safe_format_buffer_va_list(buf, sizeof(buf), fmt, args);
  fatal("%s: %s", buf, strerror(err));
}

static bool get_main_thread_name(char* buf, size_t len) {
  unique_fd fd(open("/proc/self/comm", O_RDONLY | O_CLOEXEC));
  if (fd == -1) {
    return false;
  }

  ssize_t rc = read(fd, buf, len);
  if (rc == -1) {
    return false;
  } else if (rc == 0) {
    // Should never happen?
    return false;
  }

  // There's a trailing newline, replace it with a NUL.
  buf[rc - 1] = '\0';
  return true;
}

/*
 * Writes a summary of the signal to the log file.  We do this so that, if
 * for some reason we're not able to contact debuggerd, there is still some
 * indication of the failure in the log.
 *
 * We could be here as a result of native heap corruption, or while a
 * mutex is being held, so we don't want to use any libc functions that
 * could allocate memory or hold a lock.
 */
static void log_signal_summary(const siginfo_t* si) {
  char main_thread_name[MAX_TASK_NAME_LEN + 1];
  if (!get_main_thread_name(main_thread_name, sizeof(main_thread_name))) {
    strncpy(main_thread_name, "<unknown>", sizeof(main_thread_name));
  }

  if (si->si_signo == BIONIC_SIGNAL_DEBUGGER) {
    async_safe_format_log(ANDROID_LOG_INFO, "libc", "Requested dump for pid %d (%s)", __getpid(),
                          main_thread_name);
    return;
  }

  // Many signals don't have a sender or extra detail, but some do...
  pid_t self_pid = __getpid();
  char sender_desc[32] = {};  // " from pid 1234, uid 666"
  if (signal_has_sender(si, self_pid)) {
    get_signal_sender(sender_desc, sizeof(sender_desc), si);
  }
  char extra_desc[32] = {};  // ", fault addr 0x1234" or ", syscall 1234"
  if (si->si_signo == SIGSYS && si->si_code == SYS_SECCOMP) {
    async_safe_format_buffer(extra_desc, sizeof(extra_desc), ", syscall %d", si->si_syscall);
  } else if (signal_has_si_addr(si)) {
    async_safe_format_buffer(extra_desc, sizeof(extra_desc), ", fault addr %p", si->si_addr);
  }

  char thread_name[MAX_TASK_NAME_LEN + 1];  // one more for termination
  if (prctl(PR_GET_NAME, reinterpret_cast<unsigned long>(thread_name), 0, 0, 0) != 0) {
    strcpy(thread_name, "<name unknown>");
  } else {
    // short names are null terminated by prctl, but the man page
    // implies that 16 byte names are not.
    thread_name[MAX_TASK_NAME_LEN] = 0;
  }

  async_safe_format_log(ANDROID_LOG_FATAL, "libc",
                        "Fatal signal %d (%s), code %d (%s%s)%s in tid %d (%s), pid %d (%s)",
                        si->si_signo, get_signame(si), si->si_code, get_sigcode(si), sender_desc,
                        extra_desc, __gettid(), thread_name, self_pid, main_thread_name);
}

/*
 * Returns true if the handler for signal "signum" has SA_SIGINFO set.
 */
static bool have_siginfo(int signum) {
  struct sigaction old_action;
  if (sigaction(signum, nullptr, &old_action) < 0) {
    async_safe_format_log(ANDROID_LOG_WARN, "libc", "Failed testing for SA_SIGINFO: %s",
                          strerror(errno));
    return false;
  }
  return (old_action.sa_flags & SA_SIGINFO) != 0;
}

static void raise_caps() {
  // Raise CapInh to match CapPrm, so that we can set the ambient bits.
  __user_cap_header_struct capheader;
  memset(&capheader, 0, sizeof(capheader));
  capheader.version = _LINUX_CAPABILITY_VERSION_3;
  capheader.pid = 0;

  __user_cap_data_struct capdata[2];
  if (capget(&capheader, &capdata[0]) == -1) {
    fatal_errno("capget failed");
  }

  if (capdata[0].permitted != capdata[0].inheritable ||
      capdata[1].permitted != capdata[1].inheritable) {
    capdata[0].inheritable = capdata[0].permitted;
    capdata[1].inheritable = capdata[1].permitted;

    if (capset(&capheader, &capdata[0]) == -1) {
      async_safe_format_log(ANDROID_LOG_ERROR, "libc", "capset failed: %s", strerror(errno));
    }
  }

  // Set the ambient capability bits so that crash_dump gets all of our caps and can ptrace us.
  uint64_t capmask = capdata[0].inheritable;
  capmask |= static_cast<uint64_t>(capdata[1].inheritable) << 32;
  for (unsigned long i = 0; i < 64; ++i) {
    if (capmask & (1ULL << i)) {
      if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, i, 0, 0) != 0) {
        async_safe_format_log(ANDROID_LOG_ERROR, "libc",
                              "failed to raise ambient capability %lu: %s", i, strerror(errno));
      }
    }
  }
}

static pid_t __fork() {
  return clone(nullptr, nullptr, 0, nullptr);
}

// Double-clone, with CLONE_FILES to share the file descriptor table for kcmp validation.
// Returns 0 in the orphaned child, the pid of the orphan in the original process, or -1 on failure.
static void create_vm_process() {
  pid_t first = clone(nullptr, nullptr, CLONE_FILES, nullptr);
  if (first == -1) {
    fatal_errno("failed to clone vm process");
  } else if (first == 0) {
    drop_capabilities();

    if (clone(nullptr, nullptr, CLONE_FILES, nullptr) == -1) {
      _exit(errno);
    }

    // crash_dump is ptracing both sides of the fork; it'll let the parent exit,
    // but keep the orphan stopped to peek at its memory.

    // There appears to be a bug in the kernel where our death causes SIGHUP to
    // be sent to our process group if we exit while it has stopped jobs (e.g.
    // because of wait_for_debugger). Use setsid to create a new process group to
    // avoid hitting this.
    setsid();

    _exit(0);
  }

  int status;
  if (TEMP_FAILURE_RETRY(waitpid(first, &status, __WCLONE)) != first) {
    fatal_errno("failed to waitpid in double fork");
  } else if (!WIFEXITED(status)) {
    fatal("intermediate process didn't exit cleanly in double fork (status = %d)", status);
  } else if (WEXITSTATUS(status)) {
    fatal("second clone failed: %s", strerror(WEXITSTATUS(status)));
  }
}

struct debugger_thread_info {
  pid_t crashing_tid;
  pid_t pseudothread_tid;
  siginfo_t* siginfo;
  void* ucontext;
  debugger_process_info process_info;
};

// Logging and contacting debuggerd requires free file descriptors, which we might not have.
// Work around this by spawning a "thread" that shares its parent's address space, but not its file
// descriptor table, so that we can close random file descriptors without affecting the original
// process. Note that this doesn't go through pthread_create, so TLS is shared with the spawning
// process.
static void* pseudothread_stack;

static DebuggerdDumpType get_dump_type(const debugger_thread_info* thread_info) {
  if (thread_info->siginfo->si_signo == BIONIC_SIGNAL_DEBUGGER &&
      thread_info->siginfo->si_value.sival_int) {
    return kDebuggerdNativeBacktrace;
  }

  return kDebuggerdTombstoneProto;
}

static int debuggerd_dispatch_pseudothread(void* arg) {
  debugger_thread_info* thread_info = static_cast<debugger_thread_info*>(arg);

  for (int i = 0; i < 1024; ++i) {
    // Don't use close to avoid bionic's file descriptor ownership checks.
    syscall(__NR_close, i);
  }

  int devnull = TEMP_FAILURE_RETRY(open("/dev/null", O_RDWR));
  if (devnull == -1) {
    fatal_errno("failed to open /dev/null");
  } else if (devnull != 0) {
    fatal_errno("expected /dev/null fd to be 0, actually %d", devnull);
  }

  // devnull will be 0.
  TEMP_FAILURE_RETRY(dup2(devnull, 1));
  TEMP_FAILURE_RETRY(dup2(devnull, 2));

  unique_fd input_read, input_write;
  unique_fd output_read, output_write;
  if (!Pipe(&input_read, &input_write) != 0 || !Pipe(&output_read, &output_write)) {
    fatal_errno("failed to create pipe");
  }

  uint32_t version;
  ssize_t expected;

  // ucontext_t is absurdly large on AArch64, so piece it together manually with writev.
  struct iovec iovs[4] = {
      {.iov_base = &version, .iov_len = sizeof(version)},
      {.iov_base = thread_info->siginfo, .iov_len = sizeof(siginfo_t)},
      {.iov_base = thread_info->ucontext, .iov_len = sizeof(ucontext_t)},
  };

  constexpr size_t kHeaderSize = sizeof(version) + sizeof(siginfo_t) + sizeof(ucontext_t);

  if (thread_info->process_info.fdsan_table) {
    // Dynamic executables always use version 4. There is no need to increment the version number if
    // the format changes, because the sender (linker) and receiver (crash_dump) are version locked.
    version = 4;
    expected = sizeof(CrashInfoHeader) + sizeof(CrashInfoDataDynamic);

    static_assert(sizeof(CrashInfoHeader) + sizeof(CrashInfoDataDynamic) ==
                      kHeaderSize + sizeof(thread_info->process_info),
                  "Wire protocol structs do not match the data sent.");
#define ASSERT_SAME_OFFSET(MEMBER1, MEMBER2) \
    static_assert(sizeof(CrashInfoHeader) + offsetof(CrashInfoDataDynamic, MEMBER1) == \
                      kHeaderSize + offsetof(debugger_process_info, MEMBER2), \
                  "Wire protocol offset does not match data sent: " #MEMBER1);
    ASSERT_SAME_OFFSET(fdsan_table_address, fdsan_table);
    ASSERT_SAME_OFFSET(gwp_asan_state, gwp_asan_state);
    ASSERT_SAME_OFFSET(gwp_asan_metadata, gwp_asan_metadata);
    ASSERT_SAME_OFFSET(scudo_stack_depot, scudo_stack_depot);
    ASSERT_SAME_OFFSET(scudo_region_info, scudo_region_info);
    ASSERT_SAME_OFFSET(scudo_ring_buffer, scudo_ring_buffer);
    ASSERT_SAME_OFFSET(scudo_ring_buffer_size, scudo_ring_buffer_size);
    ASSERT_SAME_OFFSET(recoverable_gwp_asan_crash, recoverable_gwp_asan_crash);
#undef ASSERT_SAME_OFFSET

    iovs[3] = {.iov_base = &thread_info->process_info,
               .iov_len = sizeof(thread_info->process_info)};
  } else {
    // Static executables always use version 1.
    version = 1;
    expected = sizeof(CrashInfoHeader) + sizeof(CrashInfoDataStatic);

    static_assert(
        sizeof(CrashInfoHeader) + sizeof(CrashInfoDataStatic) == kHeaderSize + sizeof(uintptr_t),
        "Wire protocol structs do not match the data sent.");

    iovs[3] = {.iov_base = &thread_info->process_info.abort_msg, .iov_len = sizeof(uintptr_t)};
  }
  errno = 0;
  if (fcntl(output_write.get(), F_SETPIPE_SZ, expected) < static_cast<int>(expected)) {
    fatal_errno("failed to set pipe buffer size");
  }

  ssize_t rc = TEMP_FAILURE_RETRY(writev(output_write.get(), iovs, arraysize(iovs)));
  if (rc == -1) {
    fatal_errno("failed to write crash info");
  } else if (rc != expected) {
    fatal("failed to write crash info, wrote %zd bytes, expected %zd", rc, expected);
  }

  // Don't use fork(2) to avoid calling pthread_atfork handlers.
  pid_t crash_dump_pid = __fork();
  if (crash_dump_pid == -1) {
    async_safe_format_log(ANDROID_LOG_FATAL, "libc",
                          "failed to fork in debuggerd signal handler: %s", strerror(errno));
  } else if (crash_dump_pid == 0) {
    TEMP_FAILURE_RETRY(dup2(input_write.get(), STDOUT_FILENO));
    TEMP_FAILURE_RETRY(dup2(output_read.get(), STDIN_FILENO));
    input_read.reset();
    input_write.reset();
    output_read.reset();
    output_write.reset();

    raise_caps();

    char main_tid[10];
    char pseudothread_tid[10];
    char debuggerd_dump_type[10];
    async_safe_format_buffer(main_tid, sizeof(main_tid), "%d", thread_info->crashing_tid);
    async_safe_format_buffer(pseudothread_tid, sizeof(pseudothread_tid), "%d",
                             thread_info->pseudothread_tid);
    async_safe_format_buffer(debuggerd_dump_type, sizeof(debuggerd_dump_type), "%d",
                             get_dump_type(thread_info));

    execle(CRASH_DUMP_PATH, CRASH_DUMP_NAME, main_tid, pseudothread_tid, debuggerd_dump_type,
           nullptr, nullptr);
    async_safe_format_log(ANDROID_LOG_FATAL, "libc", "failed to exec crash_dump helper: %s",
                          strerror(errno));
    return 1;
  }

  input_write.reset();
  output_read.reset();

  // crash_dump will ptrace and pause all of our threads, and then write to the pipe to tell
  // us to fork off a process to read memory from.
  char buf[4];
  rc = TEMP_FAILURE_RETRY(read(input_read.get(), &buf, sizeof(buf)));

  bool success = false;
  if (rc == 1 && buf[0] == '\1') {
    // crash_dump successfully started, and is ptracing us.
    // Fork off a copy of our address space for it to use.
    create_vm_process();
    success = true;
  } else {
    // Something went wrong, log it.
    if (rc == -1) {
      async_safe_format_log(ANDROID_LOG_FATAL, "libc", "read of IPC pipe failed: %s",
                            strerror(errno));
    } else if (rc == 0) {
      async_safe_format_log(ANDROID_LOG_FATAL, "libc",
                            "crash_dump helper failed to exec, or was killed");
    } else if (rc != 1) {
      async_safe_format_log(ANDROID_LOG_FATAL, "libc",
                            "read of IPC pipe returned unexpected value: %zd", rc);
    } else if (buf[0] != '\1') {
      async_safe_format_log(ANDROID_LOG_FATAL, "libc", "crash_dump helper reported failure");
    }
  }

  // Don't leave a zombie child.
  int status;
  if (TEMP_FAILURE_RETRY(waitpid(crash_dump_pid, &status, 0)) == -1) {
    async_safe_format_log(ANDROID_LOG_FATAL, "libc", "failed to wait for crash_dump helper: %s",
                          strerror(errno));
  } else if (WIFSTOPPED(status) || WIFSIGNALED(status)) {
    async_safe_format_log(ANDROID_LOG_FATAL, "libc", "crash_dump helper crashed or stopped");
  }

  if (success) {
    if (thread_info->siginfo->si_signo != BIONIC_SIGNAL_DEBUGGER) {
      // For crashes, we don't need to minimize pause latency.
      // Wait for the dump to complete before having the process exit, to avoid being murdered by
      // ActivityManager or init.
      TEMP_FAILURE_RETRY(read(input_read, &buf, sizeof(buf)));
    }
  }

  return success ? 0 : 1;
}

static void resend_signal(siginfo_t* info) {
  // Signals can either be fatal or nonfatal.
  // For fatal signals, crash_dump will send us the signal we crashed with
  // before resuming us, so that processes using waitpid on us will see that we
  // exited with the correct exit status (e.g. so that sh will report
  // "Segmentation fault" instead of "Killed"). For this to work, we need
  // to deregister our signal handler for that signal before continuing.
  if (info->si_signo != BIONIC_SIGNAL_DEBUGGER) {
    signal(info->si_signo, SIG_DFL);
    int rc = syscall(SYS_rt_tgsigqueueinfo, __getpid(), __gettid(), info->si_signo, info);
    if (rc != 0) {
      fatal_errno("failed to resend signal during crash");
    }
  }
}

// Handler that does crash dumping by forking and doing the processing in the child.
// Do this by ptracing the relevant thread, and then execing debuggerd to do the actual dump.
static void debuggerd_signal_handler(int signal_number, siginfo_t* info, void* context) {
  // Make sure we don't change the value of errno, in case a signal comes in between the process
  // making a syscall and checking errno.
  ErrnoRestorer restorer;

  auto *ucontext = static_cast<ucontext_t*>(context);

  // It's possible somebody cleared the SA_SIGINFO flag, which would mean
  // our "info" arg holds an undefined value.
  if (!have_siginfo(signal_number)) {
    info = nullptr;
  }

  struct siginfo dummy_info = {};
  if (!info) {
    memset(&dummy_info, 0, sizeof(dummy_info));
    dummy_info.si_signo = signal_number;
    dummy_info.si_code = SI_USER;
    dummy_info.si_pid = __getpid();
    dummy_info.si_uid = getuid();
    info = &dummy_info;
  } else if (info->si_code >= 0 || info->si_code == SI_TKILL) {
    // rt_tgsigqueueinfo(2)'s documentation appears to be incorrect on kernels
    // that contain commit 66dd34a (3.9+). The manpage claims to only allow
    // negative si_code values that are not SI_TKILL, but 66dd34a changed the
    // check to allow all si_code values in calls coming from inside the house.
  }

  debugger_process_info process_info = {};
  if (g_callbacks.get_process_info) {
    process_info = g_callbacks.get_process_info();
  }
  uintptr_t si_val = reinterpret_cast<uintptr_t>(info->si_ptr);
  if (signal_number == BIONIC_SIGNAL_DEBUGGER) {
    // Applications can set abort messages via android_set_abort_message without
    // actually aborting; ignore those messages in non-fatal dumps.
    process_info.abort_msg = nullptr;
    if (info->si_code == SI_QUEUE && info->si_pid == __getpid()) {
      // Allow for the abort message to be explicitly specified via the sigqueue value.
      // Keep the bottom bit intact for representing whether we want a backtrace or a tombstone.
      if (si_val != kDebuggerdFallbackSivalUintptrRequestDump) {
        process_info.abort_msg = reinterpret_cast<void*>(si_val & ~1);
        info->si_ptr = reinterpret_cast<void*>(si_val & 1);
      }
    }
  }

  gwp_asan_callbacks_t gwp_asan_callbacks = {};
  if (g_callbacks.get_gwp_asan_callbacks != nullptr) {
    // GWP-ASan catches use-after-free and heap-buffer-overflow by using PROT_NONE
    // guard pages, which lead to SEGV. Normally, debuggerd prints a bug report
    // and the process terminates, but in some cases, we actually want to print
    // the bug report and let the signal handler return, and restart the process.
    // In order to do that, we need to disable GWP-ASan's guard pages. The
    // following callbacks handle this case.
    gwp_asan_callbacks = g_callbacks.get_gwp_asan_callbacks();
    if (signal_number == SIGSEGV && signal_has_si_addr(info) &&
        gwp_asan_callbacks.debuggerd_needs_gwp_asan_recovery &&
        gwp_asan_callbacks.debuggerd_gwp_asan_pre_crash_report &&
        gwp_asan_callbacks.debuggerd_gwp_asan_post_crash_report &&
        gwp_asan_callbacks.debuggerd_needs_gwp_asan_recovery(info->si_addr)) {
      gwp_asan_callbacks.debuggerd_gwp_asan_pre_crash_report(info->si_addr);
      process_info.recoverable_gwp_asan_crash = true;
    }
  }

  // If sival_int is ~0, it means that the fallback handler has been called
  // once before and this function is being called again to dump the stack
  // of a specific thread. It is possible that the prctl call might return 1,
  // then return 0 in subsequent calls, so check the sival_int to determine if
  // the fallback handler should be called first.
  bool no_new_privs = prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0) == 1;
  if (si_val == kDebuggerdFallbackSivalUintptrRequestDump || no_new_privs) {
    // This check might be racy if another thread sets NO_NEW_PRIVS, but this should be unlikely,
    // you can only set NO_NEW_PRIVS to 1, and the effect should be at worst a single missing
    // ANR trace.
    debuggerd_fallback_handler(info, ucontext, process_info.abort_msg);
    if (no_new_privs && process_info.recoverable_gwp_asan_crash) {
      gwp_asan_callbacks.debuggerd_gwp_asan_post_crash_report(info->si_addr);
      return;
    }
    resend_signal(info);
    return;
  }

  // Only allow one thread to handle a signal at a time.
  int ret = pthread_mutex_lock(&crash_mutex);
  if (ret != 0) {
    async_safe_format_log(ANDROID_LOG_INFO, "libc", "pthread_mutex_lock failed: %s", strerror(ret));
    return;
  }

  log_signal_summary(info);

  // If we got here due to the signal BIONIC_SIGNAL_DEBUGGER, it's possible
  // this is not the main thread, which can cause the intercept logic to fail
  // since the intercept is only looking for the main thread. In this case,
  // setting crashing_tid to pid instead of the current thread's tid avoids
  // the problem.
  debugger_thread_info thread_info = {
      .crashing_tid = (signal_number == BIONIC_SIGNAL_DEBUGGER) ? __getpid() : __gettid(),
      .pseudothread_tid = -1,
      .siginfo = info,
      .ucontext = context,
      .process_info = process_info,
  };

  // Set PR_SET_DUMPABLE to 1, so that crash_dump can ptrace us.
  int orig_dumpable = prctl(PR_GET_DUMPABLE);
  if (prctl(PR_SET_DUMPABLE, 1) != 0) {
    fatal_errno("failed to set dumpable");
  }

  // On kernels with yama_ptrace enabled, also allow any process to attach.
  bool restore_orig_ptracer = true;
  if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) {
    if (errno == EINVAL) {
      // This kernel does not support PR_SET_PTRACER_ANY, or Yama is not enabled.
      restore_orig_ptracer = false;
    } else {
      fatal_errno("failed to set traceable");
    }
  }

  // Essentially pthread_create without CLONE_FILES, so we still work during file descriptor
  // exhaustion.
  pid_t child_pid =
    clone(debuggerd_dispatch_pseudothread, pseudothread_stack,
          CLONE_THREAD | CLONE_SIGHAND | CLONE_VM | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID,
          &thread_info, nullptr, nullptr, &thread_info.pseudothread_tid);
  if (child_pid == -1) {
    fatal_errno("failed to spawn debuggerd dispatch thread");
  }

  // Wait for the child to start...
  futex_wait(&thread_info.pseudothread_tid, -1);

  // and then wait for it to terminate.
  futex_wait(&thread_info.pseudothread_tid, child_pid);

  // Restore PR_SET_DUMPABLE to its original value.
  if (prctl(PR_SET_DUMPABLE, orig_dumpable) != 0) {
    fatal_errno("failed to restore dumpable");
  }

  // Restore PR_SET_PTRACER to its original value.
  if (restore_orig_ptracer && prctl(PR_SET_PTRACER, 0) != 0) {
    fatal_errno("failed to restore traceable");
  }

  if (info->si_signo == BIONIC_SIGNAL_DEBUGGER) {
    // If the signal is fatal, don't unlock the mutex to prevent other crashing threads from
    // starting to dump right before our death.
    pthread_mutex_unlock(&crash_mutex);
  } else if (process_info.recoverable_gwp_asan_crash) {
    gwp_asan_callbacks.debuggerd_gwp_asan_post_crash_report(info->si_addr);
    pthread_mutex_unlock(&crash_mutex);
  }
#ifdef __aarch64__
  else if (info->si_signo == SIGSEGV &&
           (info->si_code == SEGV_MTESERR || info->si_code == SEGV_MTEAERR) &&
           is_permissive_mte()) {
    // If we are in permissive MTE mode, we do not crash, but instead disable MTE on this thread,
    // and then let the failing instruction be retried. The second time should work (except
    // if there is another non-MTE fault).
    int tagged_addr_ctrl = prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0);
    if (tagged_addr_ctrl < 0) {
      fatal_errno("failed to PR_GET_TAGGED_ADDR_CTRL");
    }
    tagged_addr_ctrl = (tagged_addr_ctrl & ~PR_MTE_TCF_MASK) | PR_MTE_TCF_NONE;
    if (prctl(PR_SET_TAGGED_ADDR_CTRL, tagged_addr_ctrl, 0, 0, 0) < 0) {
      fatal_errno("failed to PR_SET_TAGGED_ADDR_CTRL");
    }
    async_safe_format_log(ANDROID_LOG_ERROR, "libc",
                          "MTE ERROR DETECTED BUT RUNNING IN PERMISSIVE MODE. CONTINUING.");
    pthread_mutex_unlock(&crash_mutex);
  } else if (info->si_signo == SIGSEGV && info->si_code == SEGV_MTEAERR && getppid() == 1) {
    // Back channel to init (see system/core/init/service.cpp) to signal that
    // this process crashed due to an ASYNC MTE fault and should be considered
    // for upgrade to SYNC mode. We are re-using the ART profiler signal, which
    // is always handled (ignored in native processes, handled for generating a
    // dump in ART processes), so a process will never crash from this signal
    // except from here.
    // The kernel is not particularly receptive to adding this information:
    // https://lore.kernel.org/all/20220909180617.374238-1-fmayer@google.com/, so we work around
    // like this.
    info->si_signo = BIONIC_SIGNAL_ART_PROFILER;
    resend_signal(info);
  }
#endif
  else {
    // Resend the signal, so that either the debugger or the parent's waitpid sees it.
    resend_signal(info);
  }
}

void debuggerd_init(debuggerd_callbacks_t* callbacks) {
  if (callbacks) {
    g_callbacks = *callbacks;
  }

  size_t thread_stack_pages = 8;
  void* thread_stack_allocation = mmap(nullptr, getpagesize() * (thread_stack_pages + 2), PROT_NONE,
                                       MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
  if (thread_stack_allocation == MAP_FAILED) {
    fatal_errno("failed to allocate debuggerd thread stack");
  }

  char* stack = static_cast<char*>(thread_stack_allocation) + getpagesize();
  if (mprotect(stack, getpagesize() * thread_stack_pages, PROT_READ | PROT_WRITE) != 0) {
    fatal_errno("failed to mprotect debuggerd thread stack");
  }

  // Stack grows negatively, set it to the last byte in the page...
  stack = (stack + thread_stack_pages * getpagesize() - 1);
  // and align it.
  stack -= 15;
  pseudothread_stack = stack;

  struct sigaction action;
  memset(&action, 0, sizeof(action));
  sigfillset(&action.sa_mask);
  action.sa_sigaction = debuggerd_signal_handler;
  action.sa_flags = SA_RESTART | SA_SIGINFO;

  // Use the alternate signal stack if available so we can catch stack overflows.
  action.sa_flags |= SA_ONSTACK;

#define SA_EXPOSE_TAGBITS 0x00000800
  // Request that the kernel set tag bits in the fault address. This is necessary for diagnosing MTE
  // faults.
  action.sa_flags |= SA_EXPOSE_TAGBITS;

  debuggerd_register_handlers(&action);
}

// When debuggerd's signal handler is the first handler called, it's great at
// handling the recoverable GWP-ASan mode. For apps, sigchain (from libart) is
// always the first signal handler, and so the following function is what
// sigchain must call before processing the signal. This allows for processing
// of a potentially recoverable GWP-ASan crash. If the signal requires GWP-ASan
// recovery, then dump a report (via the regular debuggerd hanndler), and patch
// up the allocator, and allow the process to continue (indicated by returning
// 'true'). If the crash has nothing to do with GWP-ASan, or recovery isn't
// possible, return 'false'.
bool debuggerd_handle_signal(int signal_number, siginfo_t* info, void* context) {
  if (signal_number != SIGSEGV || !signal_has_si_addr(info)) return false;

  if (g_callbacks.get_gwp_asan_callbacks == nullptr) return false;
  gwp_asan_callbacks_t gwp_asan_callbacks = g_callbacks.get_gwp_asan_callbacks();
  if (gwp_asan_callbacks.debuggerd_needs_gwp_asan_recovery == nullptr ||
      gwp_asan_callbacks.debuggerd_gwp_asan_pre_crash_report == nullptr ||
      gwp_asan_callbacks.debuggerd_gwp_asan_post_crash_report == nullptr ||
      !gwp_asan_callbacks.debuggerd_needs_gwp_asan_recovery(info->si_addr)) {
    return false;
  }

  // Only dump a crash report for the first GWP-ASan crash. ActivityManager
  // doesn't like it when an app crashes multiple times, and is even more strict
  // about an app crashing multiple times in a short time period. While the app
  // won't crash fully when we do GWP-ASan recovery, ActivityManager still gets
  // the information about the crash through the DropBoxManager service. If an
  // app has multiple back-to-back GWP-ASan crashes, this would lead to the app
  // being killed, which defeats the purpose of having the recoverable mode. To
  // mitigate against this, only generate a debuggerd crash report for the first
  // GWP-ASan crash encountered. We still need to do the patching up of the
  // allocator though, so do that.
  static pthread_mutex_t first_crash_mutex = PTHREAD_MUTEX_INITIALIZER;
  pthread_mutex_lock(&first_crash_mutex);
  static bool first_crash = true;

  if (first_crash) {
    // `debuggerd_signal_handler` will call
    // `debuggerd_gwp_asan_(pre|post)_crash_report`, so no need to manually call
    // them here.
    debuggerd_signal_handler(signal_number, info, context);
    first_crash = false;
  } else {
    gwp_asan_callbacks.debuggerd_gwp_asan_pre_crash_report(info->si_addr);
    gwp_asan_callbacks.debuggerd_gwp_asan_post_crash_report(info->si_addr);
  }

  pthread_mutex_unlock(&first_crash_mutex);
  return true;
}