1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flashing.h"
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <algorithm>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/strings.h>
#include <ext4_utils/ext4_utils.h>
#include <fs_mgr_overlayfs.h>
#include <fstab/fstab.h>
#include <libavb/libavb.h>
#include <liblp/builder.h>
#include <liblp/liblp.h>
#include <libsnapshot/snapshot.h>
#include <sparse/sparse.h>
#include "fastboot_device.h"
#include "utility.h"
using namespace android::fs_mgr;
using namespace std::literals;
namespace {
constexpr uint32_t SPARSE_HEADER_MAGIC = 0xed26ff3a;
void WipeOverlayfsForPartition(FastbootDevice* device, const std::string& partition_name) {
// May be called, in the case of sparse data, multiple times so cache/skip.
static std::set<std::string> wiped;
if (wiped.find(partition_name) != wiped.end()) return;
wiped.insert(partition_name);
// Following appears to have a first time 2% impact on flashing speeds.
// Convert partition_name to a validated mount point and wipe.
Fstab fstab;
ReadDefaultFstab(&fstab);
std::optional<AutoMountMetadata> mount_metadata;
for (const auto& entry : fstab) {
auto partition = android::base::Basename(entry.mount_point);
if ("/" == entry.mount_point) {
partition = "system";
}
if ((partition + device->GetCurrentSlot()) == partition_name) {
mount_metadata.emplace();
android::fs_mgr::TeardownAllOverlayForMountPoint(entry.mount_point);
}
}
}
} // namespace
int FlashRawDataChunk(PartitionHandle* handle, const char* data, size_t len) {
size_t ret = 0;
const size_t max_write_size = 1048576;
void* aligned_buffer;
if (posix_memalign(&aligned_buffer, 4096, max_write_size)) {
PLOG(ERROR) << "Failed to allocate write buffer";
return -ENOMEM;
}
auto aligned_buffer_unique_ptr = std::unique_ptr<void, decltype(&free)>{aligned_buffer, free};
while (ret < len) {
int this_len = std::min(max_write_size, len - ret);
memcpy(aligned_buffer_unique_ptr.get(), data, this_len);
// In case of non 4KB aligned writes, reopen without O_DIRECT flag
if (this_len & 0xFFF) {
if (handle->Reset(O_WRONLY) != true) {
PLOG(ERROR) << "Failed to reset file descriptor";
return -1;
}
}
int this_ret = write(handle->fd(), aligned_buffer_unique_ptr.get(), this_len);
if (this_ret < 0) {
PLOG(ERROR) << "Failed to flash data of len " << len;
return -1;
}
data += this_ret;
ret += this_ret;
}
return 0;
}
int FlashRawData(PartitionHandle* handle, const std::vector<char>& downloaded_data) {
int ret = FlashRawDataChunk(handle, downloaded_data.data(), downloaded_data.size());
if (ret < 0) {
return -errno;
}
return ret;
}
int WriteCallback(void* priv, const void* data, size_t len) {
PartitionHandle* handle = reinterpret_cast<PartitionHandle*>(priv);
if (!data) {
if (lseek64(handle->fd(), len, SEEK_CUR) < 0) {
int rv = -errno;
PLOG(ERROR) << "lseek failed";
return rv;
}
return 0;
}
return FlashRawDataChunk(handle, reinterpret_cast<const char*>(data), len);
}
int FlashSparseData(PartitionHandle* handle, std::vector<char>& downloaded_data) {
struct sparse_file* file = sparse_file_import_buf(downloaded_data.data(),
downloaded_data.size(), true, false);
if (!file) {
// Invalid sparse format
LOG(ERROR) << "Unable to open sparse data for flashing";
return -EINVAL;
}
return sparse_file_callback(file, false, false, WriteCallback, reinterpret_cast<void*>(handle));
}
int FlashBlockDevice(PartitionHandle* handle, std::vector<char>& downloaded_data) {
lseek64(handle->fd(), 0, SEEK_SET);
if (downloaded_data.size() >= sizeof(SPARSE_HEADER_MAGIC) &&
*reinterpret_cast<uint32_t*>(downloaded_data.data()) == SPARSE_HEADER_MAGIC) {
return FlashSparseData(handle, downloaded_data);
} else {
return FlashRawData(handle, downloaded_data);
}
}
static void CopyAVBFooter(std::vector<char>* data, const uint64_t block_device_size) {
if (data->size() < AVB_FOOTER_SIZE) {
return;
}
std::string footer;
uint64_t footer_offset = data->size() - AVB_FOOTER_SIZE;
for (int idx = 0; idx < AVB_FOOTER_MAGIC_LEN; idx++) {
footer.push_back(data->at(footer_offset + idx));
}
if (0 != footer.compare(AVB_FOOTER_MAGIC)) {
return;
}
// copy AVB footer from end of data to end of block device
uint64_t original_data_size = data->size();
data->resize(block_device_size, 0);
for (int idx = 0; idx < AVB_FOOTER_SIZE; idx++) {
data->at(block_device_size - 1 - idx) = data->at(original_data_size - 1 - idx);
}
}
int Flash(FastbootDevice* device, const std::string& partition_name) {
PartitionHandle handle;
if (!OpenPartition(device, partition_name, &handle, O_WRONLY | O_DIRECT)) {
return -ENOENT;
}
std::vector<char> data = std::move(device->download_data());
if (data.size() == 0) {
LOG(ERROR) << "Cannot flash empty data vector";
return -EINVAL;
}
uint64_t block_device_size = get_block_device_size(handle.fd());
if (data.size() > block_device_size) {
LOG(ERROR) << "Cannot flash " << data.size() << " bytes to block device of size "
<< block_device_size;
return -EOVERFLOW;
} else if (data.size() < block_device_size &&
(partition_name == "boot" || partition_name == "boot_a" ||
partition_name == "boot_b" || partition_name == "init_boot" ||
partition_name == "init_boot_a" || partition_name == "init_boot_b")) {
CopyAVBFooter(&data, block_device_size);
}
if (android::base::GetProperty("ro.system.build.type", "") != "user") {
WipeOverlayfsForPartition(device, partition_name);
}
int result = FlashBlockDevice(&handle, data);
sync();
return result;
}
static void RemoveScratchPartition() {
AutoMountMetadata mount_metadata;
android::fs_mgr::TeardownAllOverlayForMountPoint();
}
bool UpdateSuper(FastbootDevice* device, const std::string& super_name, bool wipe) {
std::vector<char> data = std::move(device->download_data());
if (data.empty()) {
return device->WriteFail("No data available");
}
std::unique_ptr<LpMetadata> new_metadata = ReadFromImageBlob(data.data(), data.size());
if (!new_metadata) {
return device->WriteFail("Data is not a valid logical partition metadata image");
}
if (!FindPhysicalPartition(super_name)) {
return device->WriteFail("Cannot find " + super_name +
", build may be missing broken or missing boot_devices");
}
std::string slot_suffix = device->GetCurrentSlot();
uint32_t slot_number = SlotNumberForSlotSuffix(slot_suffix);
std::string other_slot_suffix;
if (!slot_suffix.empty()) {
other_slot_suffix = (slot_suffix == "_a") ? "_b" : "_a";
}
// If we are unable to read the existing metadata, then the super partition
// is corrupt. In this case we reflash the whole thing using the provided
// image.
std::unique_ptr<LpMetadata> old_metadata = ReadMetadata(super_name, slot_number);
if (wipe || !old_metadata) {
if (!FlashPartitionTable(super_name, *new_metadata.get())) {
return device->WriteFail("Unable to flash new partition table");
}
RemoveScratchPartition();
sync();
return device->WriteOkay("Successfully flashed partition table");
}
std::set<std::string> partitions_to_keep;
bool virtual_ab = android::base::GetBoolProperty("ro.virtual_ab.enabled", false);
for (const auto& partition : old_metadata->partitions) {
// Preserve partitions in the other slot, but not the current slot.
std::string partition_name = GetPartitionName(partition);
if (!slot_suffix.empty()) {
auto part_suffix = GetPartitionSlotSuffix(partition_name);
if (part_suffix == slot_suffix || (part_suffix == other_slot_suffix && virtual_ab)) {
continue;
}
}
std::string group_name = GetPartitionGroupName(old_metadata->groups[partition.group_index]);
// Skip partitions in the COW group
if (group_name == android::snapshot::kCowGroupName) {
continue;
}
partitions_to_keep.emplace(partition_name);
}
// Do not preserve the scratch partition.
partitions_to_keep.erase("scratch");
if (!partitions_to_keep.empty()) {
std::unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(*new_metadata.get());
if (!builder->ImportPartitions(*old_metadata.get(), partitions_to_keep)) {
return device->WriteFail(
"Old partitions are not compatible with the new super layout; wipe needed");
}
new_metadata = builder->Export();
if (!new_metadata) {
return device->WriteFail("Unable to build new partition table; wipe needed");
}
}
// Write the new table to every metadata slot.
if (!UpdateAllPartitionMetadata(device, super_name, *new_metadata.get())) {
return device->WriteFail("Unable to write new partition table");
}
RemoveScratchPartition();
sync();
return device->WriteOkay("Successfully updated partition table");
}
|