1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "liblp/builder.h"
#include <string.h>
#include <algorithm>
#include <limits>
#include <android-base/unique_fd.h>
#include "liblp/liblp.h"
#include "liblp/property_fetcher.h"
#include "reader.h"
#include "utility.h"
namespace android {
namespace fs_mgr {
std::ostream& operator<<(std::ostream& os, const Extent& extent) {
switch (extent.GetExtentType()) {
case ExtentType::kZero: {
os << "type: Zero";
break;
}
case ExtentType::kLinear: {
auto linear_extent = static_cast<const LinearExtent*>(&extent);
os << "type: Linear, physical sectors: " << linear_extent->physical_sector()
<< ", end sectors: " << linear_extent->end_sector();
break;
}
}
return os;
}
bool LinearExtent::AddTo(LpMetadata* out) const {
if (device_index_ >= out->block_devices.size()) {
LERROR << "Extent references unknown block device.";
return false;
}
out->extents.emplace_back(
LpMetadataExtent{num_sectors_, LP_TARGET_TYPE_LINEAR, physical_sector_, device_index_});
return true;
}
bool LinearExtent::operator==(const android::fs_mgr::Extent& other) const {
if (other.GetExtentType() != ExtentType::kLinear) {
return false;
}
auto other_ptr = static_cast<const LinearExtent*>(&other);
return num_sectors_ == other_ptr->num_sectors_ &&
physical_sector_ == other_ptr->physical_sector_ &&
device_index_ == other_ptr->device_index_;
}
bool LinearExtent::OverlapsWith(const LinearExtent& other) const {
if (device_index_ != other.device_index()) {
return false;
}
return physical_sector() < other.end_sector() && other.physical_sector() < end_sector();
}
bool LinearExtent::OverlapsWith(const Interval& interval) const {
if (device_index_ != interval.device_index) {
return false;
}
return physical_sector() < interval.end && interval.start < end_sector();
}
Interval LinearExtent::AsInterval() const {
return Interval(device_index(), physical_sector(), end_sector());
}
bool ZeroExtent::AddTo(LpMetadata* out) const {
out->extents.emplace_back(LpMetadataExtent{num_sectors_, LP_TARGET_TYPE_ZERO, 0, 0});
return true;
}
bool ZeroExtent::operator==(const android::fs_mgr::Extent& other) const {
return other.GetExtentType() == ExtentType::kZero && num_sectors_ == other.num_sectors();
}
Partition::Partition(std::string_view name, std::string_view group_name, uint32_t attributes)
: name_(name), group_name_(group_name), attributes_(attributes), size_(0) {}
void Partition::AddExtent(std::unique_ptr<Extent>&& extent) {
size_ += extent->num_sectors() * LP_SECTOR_SIZE;
if (LinearExtent* new_extent = extent->AsLinearExtent()) {
if (!extents_.empty() && extents_.back()->AsLinearExtent()) {
LinearExtent* prev_extent = extents_.back()->AsLinearExtent();
if (prev_extent->end_sector() == new_extent->physical_sector() &&
prev_extent->device_index() == new_extent->device_index()) {
// If the previous extent can be merged into this new one, do so
// to avoid creating unnecessary extents.
extent = std::make_unique<LinearExtent>(
prev_extent->num_sectors() + new_extent->num_sectors(),
prev_extent->device_index(), prev_extent->physical_sector());
extents_.pop_back();
}
}
}
extents_.push_back(std::move(extent));
}
void Partition::RemoveExtents() {
size_ = 0;
extents_.clear();
}
void Partition::ShrinkTo(uint64_t aligned_size) {
if (aligned_size == 0) {
RemoveExtents();
return;
}
// Remove or shrink extents of any kind until the total partition size is
// equal to the requested size.
uint64_t sectors_to_remove = (size_ - aligned_size) / LP_SECTOR_SIZE;
while (sectors_to_remove) {
Extent* extent = extents_.back().get();
if (extent->num_sectors() > sectors_to_remove) {
size_ -= sectors_to_remove * LP_SECTOR_SIZE;
extent->set_num_sectors(extent->num_sectors() - sectors_to_remove);
break;
}
size_ -= (extent->num_sectors() * LP_SECTOR_SIZE);
sectors_to_remove -= extent->num_sectors();
extents_.pop_back();
}
DCHECK(size_ == aligned_size);
}
Partition Partition::GetBeginningExtents(uint64_t aligned_size) const {
Partition p(name_, group_name_, attributes_);
for (const auto& extent : extents_) {
auto le = extent->AsLinearExtent();
if (le) {
p.AddExtent(std::make_unique<LinearExtent>(*le));
} else {
p.AddExtent(std::make_unique<ZeroExtent>(extent->num_sectors()));
}
}
p.ShrinkTo(aligned_size);
return p;
}
uint64_t Partition::BytesOnDisk() const {
uint64_t sectors = 0;
for (const auto& extent : extents_) {
if (!extent->AsLinearExtent()) {
continue;
}
sectors += extent->num_sectors();
}
return sectors * LP_SECTOR_SIZE;
}
std::unique_ptr<MetadataBuilder> MetadataBuilder::New(const IPartitionOpener& opener,
const std::string& super_partition,
uint32_t slot_number) {
std::unique_ptr<LpMetadata> metadata = ReadMetadata(opener, super_partition, slot_number);
if (!metadata) {
return nullptr;
}
return New(*metadata.get(), &opener);
}
std::unique_ptr<MetadataBuilder> MetadataBuilder::New(const std::string& super_partition,
uint32_t slot_number) {
return New(PartitionOpener(), super_partition, slot_number);
}
std::unique_ptr<MetadataBuilder> MetadataBuilder::New(
const std::vector<BlockDeviceInfo>& block_devices, const std::string& super_partition,
uint32_t metadata_max_size, uint32_t metadata_slot_count) {
std::unique_ptr<MetadataBuilder> builder(new MetadataBuilder());
if (!builder->Init(block_devices, super_partition, metadata_max_size, metadata_slot_count)) {
return nullptr;
}
return builder;
}
std::unique_ptr<MetadataBuilder> MetadataBuilder::New(const LpMetadata& metadata,
const IPartitionOpener* opener) {
std::unique_ptr<MetadataBuilder> builder(new MetadataBuilder());
if (!builder->Init(metadata)) {
return nullptr;
}
if (opener) {
for (size_t i = 0; i < builder->block_devices_.size(); i++) {
std::string partition_name = builder->GetBlockDevicePartitionName(i);
BlockDeviceInfo device_info;
if (opener->GetInfo(partition_name, &device_info)) {
builder->UpdateBlockDeviceInfo(i, device_info);
}
}
}
return builder;
}
std::unique_ptr<MetadataBuilder> MetadataBuilder::NewForUpdate(const IPartitionOpener& opener,
const std::string& source_partition,
uint32_t source_slot_number,
uint32_t target_slot_number,
bool always_keep_source_slot) {
auto metadata = ReadMetadata(opener, source_partition, source_slot_number);
if (!metadata) {
return nullptr;
}
// On retrofit DAP devices, modify the metadata so that it is suitable for being written
// to the target slot later. We detect retrofit DAP devices by checking the super partition
// name and system properties.
// See comments for UpdateMetadataForOtherSuper.
auto super_device = GetMetadataSuperBlockDevice(*metadata.get());
if (android::fs_mgr::GetBlockDevicePartitionName(*super_device) != "super" &&
IsRetrofitDynamicPartitionsDevice()) {
if (!UpdateMetadataForOtherSuper(metadata.get(), source_slot_number, target_slot_number)) {
return nullptr;
}
}
if (IPropertyFetcher::GetInstance()->GetBoolProperty("ro.virtual_ab.enabled", false)) {
if (always_keep_source_slot) {
// always_keep_source_slot implies the target build does not support snapshots.
// Clear unsupported attributes.
SetMetadataHeaderV0(metadata.get());
} else {
// !always_keep_source_slot implies the target build supports snapshots. Do snapshot
// updates.
if (!UpdateMetadataForInPlaceSnapshot(metadata.get(), source_slot_number,
target_slot_number)) {
return nullptr;
}
}
}
return New(*metadata.get(), &opener);
}
// For retrofit DAP devices, there are (conceptually) two super partitions. We'll need to translate
// block device and group names to update their slot suffixes.
// (On the other hand, On non-retrofit DAP devices there is only one location for metadata: the
// super partition. update_engine will remove and resize partitions as needed.)
bool MetadataBuilder::UpdateMetadataForOtherSuper(LpMetadata* metadata, uint32_t source_slot_number,
uint32_t target_slot_number) {
// Clear partitions and extents, since they have no meaning on the target
// slot. We also clear groups since they are re-added during OTA.
metadata->partitions.clear();
metadata->extents.clear();
metadata->groups.clear();
std::string source_slot_suffix = SlotSuffixForSlotNumber(source_slot_number);
std::string target_slot_suffix = SlotSuffixForSlotNumber(target_slot_number);
// Translate block devices.
auto source_block_devices = std::move(metadata->block_devices);
for (const auto& source_block_device : source_block_devices) {
std::string partition_name =
android::fs_mgr::GetBlockDevicePartitionName(source_block_device);
std::string slot_suffix = GetPartitionSlotSuffix(partition_name);
if (slot_suffix.empty() || slot_suffix != source_slot_suffix) {
// This should never happen. It means that the source metadata
// refers to a target or unknown block device.
LERROR << "Invalid block device for slot " << source_slot_suffix << ": "
<< partition_name;
return false;
}
std::string new_name =
partition_name.substr(0, partition_name.size() - slot_suffix.size()) +
target_slot_suffix;
auto new_device = source_block_device;
if (!UpdateBlockDevicePartitionName(&new_device, new_name)) {
LERROR << "Partition name too long: " << new_name;
return false;
}
metadata->block_devices.emplace_back(new_device);
}
return true;
}
MetadataBuilder::MetadataBuilder() : auto_slot_suffixing_(false) {
memset(&geometry_, 0, sizeof(geometry_));
geometry_.magic = LP_METADATA_GEOMETRY_MAGIC;
geometry_.struct_size = sizeof(geometry_);
memset(&header_, 0, sizeof(header_));
header_.magic = LP_METADATA_HEADER_MAGIC;
header_.major_version = LP_METADATA_MAJOR_VERSION;
header_.minor_version = LP_METADATA_MINOR_VERSION_MIN;
header_.header_size = sizeof(LpMetadataHeaderV1_0);
header_.partitions.entry_size = sizeof(LpMetadataPartition);
header_.extents.entry_size = sizeof(LpMetadataExtent);
header_.groups.entry_size = sizeof(LpMetadataPartitionGroup);
header_.block_devices.entry_size = sizeof(LpMetadataBlockDevice);
}
bool MetadataBuilder::Init(const LpMetadata& metadata) {
geometry_ = metadata.geometry;
block_devices_ = metadata.block_devices;
// Bump the version as necessary to copy any newer fields.
if (metadata.header.minor_version >= LP_METADATA_VERSION_FOR_EXPANDED_HEADER) {
RequireExpandedMetadataHeader();
header_.flags = metadata.header.flags;
}
for (const auto& group : metadata.groups) {
std::string group_name = GetPartitionGroupName(group);
if (!AddGroup(group_name, group.maximum_size)) {
return false;
}
}
for (const auto& partition : metadata.partitions) {
std::string group_name = GetPartitionGroupName(metadata.groups[partition.group_index]);
Partition* builder =
AddPartition(GetPartitionName(partition), group_name, partition.attributes);
if (!builder) {
return false;
}
ImportExtents(builder, metadata, partition);
}
return true;
}
void MetadataBuilder::ImportExtents(Partition* dest, const LpMetadata& metadata,
const LpMetadataPartition& source) {
for (size_t i = 0; i < source.num_extents; i++) {
const LpMetadataExtent& extent = metadata.extents[source.first_extent_index + i];
if (extent.target_type == LP_TARGET_TYPE_LINEAR) {
auto copy = std::make_unique<LinearExtent>(extent.num_sectors, extent.target_source,
extent.target_data);
dest->AddExtent(std::move(copy));
} else if (extent.target_type == LP_TARGET_TYPE_ZERO) {
auto copy = std::make_unique<ZeroExtent>(extent.num_sectors);
dest->AddExtent(std::move(copy));
}
}
}
static bool VerifyDeviceProperties(const BlockDeviceInfo& device_info) {
if (device_info.logical_block_size == 0) {
LERROR << "Block device " << device_info.partition_name
<< " logical block size must not be zero.";
return false;
}
if (device_info.logical_block_size % LP_SECTOR_SIZE != 0) {
LERROR << "Block device " << device_info.partition_name
<< " logical block size must be a multiple of 512.";
return false;
}
if (device_info.size % device_info.logical_block_size != 0) {
LERROR << "Block device " << device_info.partition_name
<< " size must be a multiple of its block size.";
return false;
}
if (device_info.alignment_offset % LP_SECTOR_SIZE != 0) {
LERROR << "Block device " << device_info.partition_name
<< " alignment offset is not sector-aligned.";
return false;
}
if (device_info.alignment % LP_SECTOR_SIZE != 0) {
LERROR << "Block device " << device_info.partition_name
<< " partition alignment is not sector-aligned.";
return false;
}
return true;
}
bool MetadataBuilder::Init(const std::vector<BlockDeviceInfo>& block_devices,
const std::string& super_partition, uint32_t metadata_max_size,
uint32_t metadata_slot_count) {
if (metadata_max_size < sizeof(LpMetadataHeader)) {
LERROR << "Invalid metadata maximum size.";
return false;
}
if (metadata_slot_count == 0) {
LERROR << "Invalid metadata slot count.";
return false;
}
if (block_devices.empty()) {
LERROR << "No block devices were specified.";
return false;
}
// Align the metadata size up to the nearest sector.
if (!AlignTo(metadata_max_size, LP_SECTOR_SIZE, &metadata_max_size)) {
LERROR << "Max metadata size " << metadata_max_size << " is too large.";
return false;
}
// Validate and build the block device list.
uint32_t logical_block_size = 0;
for (const auto& device_info : block_devices) {
if (!VerifyDeviceProperties(device_info)) {
return false;
}
if (!logical_block_size) {
logical_block_size = device_info.logical_block_size;
}
if (logical_block_size != device_info.logical_block_size) {
LERROR << "All partitions must have the same logical block size.";
return false;
}
LpMetadataBlockDevice out = {};
out.alignment = device_info.alignment;
out.alignment_offset = device_info.alignment_offset;
out.size = device_info.size;
if (device_info.partition_name.size() > sizeof(out.partition_name)) {
LERROR << "Partition name " << device_info.partition_name << " exceeds maximum length.";
return false;
}
strncpy(out.partition_name, device_info.partition_name.c_str(), sizeof(out.partition_name));
// In the case of the super partition, this field will be adjusted
// later. For all partitions, the first 512 bytes are considered
// untouched to be compatible code that looks for an MBR. Thus we
// start counting free sectors at sector 1, not 0.
uint64_t free_area_start = LP_SECTOR_SIZE;
bool ok;
if (out.alignment) {
ok = AlignTo(free_area_start, out.alignment, &free_area_start);
} else {
ok = AlignTo(free_area_start, logical_block_size, &free_area_start);
}
if (!ok) {
LERROR << "Integer overflow computing free area start";
return false;
}
out.first_logical_sector = free_area_start / LP_SECTOR_SIZE;
// There must be one logical block of space available.
uint64_t minimum_size = out.first_logical_sector * LP_SECTOR_SIZE + logical_block_size;
if (device_info.size < minimum_size) {
LERROR << "Block device " << device_info.partition_name
<< " is too small to hold any logical partitions.";
return false;
}
// The "root" of the super partition is always listed first.
if (device_info.partition_name == super_partition) {
block_devices_.emplace(block_devices_.begin(), out);
} else {
block_devices_.emplace_back(out);
}
}
if (GetBlockDevicePartitionName(0) != super_partition) {
LERROR << "No super partition was specified.";
return false;
}
LpMetadataBlockDevice& super = block_devices_[0];
// We reserve a geometry block (4KB) plus space for each copy of the
// maximum size of a metadata blob. Then, we double that space since
// we store a backup copy of everything.
uint64_t total_reserved = GetTotalMetadataSize(metadata_max_size, metadata_slot_count);
if (super.size < total_reserved) {
LERROR << "Attempting to create metadata on a block device that is too small.";
return false;
}
// Compute the first free sector, factoring in alignment.
uint64_t free_area_start = total_reserved;
bool ok;
if (super.alignment) {
ok = AlignTo(free_area_start, super.alignment, &free_area_start);
} else {
ok = AlignTo(free_area_start, logical_block_size, &free_area_start);
}
if (!ok) {
LERROR << "Integer overflow computing free area start";
return false;
}
super.first_logical_sector = free_area_start / LP_SECTOR_SIZE;
// There must be one logical block of free space remaining (enough for one partition).
uint64_t minimum_disk_size = (super.first_logical_sector * LP_SECTOR_SIZE) + logical_block_size;
if (super.size < minimum_disk_size) {
LERROR << "Device must be at least " << minimum_disk_size << " bytes, only has "
<< super.size;
return false;
}
geometry_.metadata_max_size = metadata_max_size;
geometry_.metadata_slot_count = metadata_slot_count;
geometry_.logical_block_size = logical_block_size;
if (!AddGroup(std::string(kDefaultGroup), 0)) {
return false;
}
return true;
}
bool MetadataBuilder::AddGroup(std::string_view group_name, uint64_t maximum_size) {
if (FindGroup(group_name)) {
LERROR << "Group already exists: " << group_name;
return false;
}
groups_.push_back(std::make_unique<PartitionGroup>(group_name, maximum_size));
return true;
}
Partition* MetadataBuilder::AddPartition(const std::string& name, uint32_t attributes) {
return AddPartition(name, kDefaultGroup, attributes);
}
Partition* MetadataBuilder::AddPartition(std::string_view name, std::string_view group_name,
uint32_t attributes) {
if (name.empty()) {
LERROR << "Partition must have a non-empty name.";
return nullptr;
}
if (FindPartition(name)) {
LERROR << "Attempting to create duplication partition with name: " << name;
return nullptr;
}
if (!FindGroup(group_name)) {
LERROR << "Could not find partition group: " << group_name;
return nullptr;
}
partitions_.push_back(std::make_unique<Partition>(name, group_name, attributes));
return partitions_.back().get();
}
Partition* MetadataBuilder::FindPartition(std::string_view name) const {
for (const auto& partition : partitions_) {
if (partition->name() == name) {
return partition.get();
}
}
return nullptr;
}
PartitionGroup* MetadataBuilder::FindGroup(std::string_view group_name) const {
for (const auto& group : groups_) {
if (group->name() == group_name) {
return group.get();
}
}
return nullptr;
}
uint64_t MetadataBuilder::TotalSizeOfGroup(PartitionGroup* group) const {
uint64_t total = 0;
for (const auto& partition : partitions_) {
if (partition->group_name() != group->name()) {
continue;
}
total += partition->BytesOnDisk();
}
return total;
}
void MetadataBuilder::RemovePartition(std::string_view name) {
for (auto iter = partitions_.begin(); iter != partitions_.end(); iter++) {
if ((*iter)->name() == name) {
partitions_.erase(iter);
return;
}
}
}
void MetadataBuilder::ExtentsToFreeList(const std::vector<Interval>& extents,
std::vector<Interval>* free_regions) const {
// Convert the extent list into a list of gaps between the extents; i.e.,
// the list of ranges that are free on the disk.
for (size_t i = 1; i < extents.size(); i++) {
const Interval& previous = extents[i - 1];
const Interval& current = extents[i];
DCHECK(previous.device_index == current.device_index);
uint64_t aligned;
if (!AlignSector(block_devices_[current.device_index], previous.end, &aligned)) {
LERROR << "Sector " << previous.end << " caused integer overflow.";
continue;
}
if (aligned >= current.start) {
// There is no gap between these two extents, try the next one.
// Note that we check with >= instead of >, since alignment may
// bump the ending sector past the beginning of the next extent.
continue;
}
// The new interval represents the free space starting at the end of
// the previous interval, and ending at the start of the next interval.
free_regions->emplace_back(current.device_index, aligned, current.start);
}
}
auto MetadataBuilder::GetFreeRegions() const -> std::vector<Interval> {
std::vector<Interval> free_regions;
// Collect all extents in the partition table, per-device, then sort them
// by starting sector.
std::vector<std::vector<Interval>> device_extents(block_devices_.size());
for (const auto& partition : partitions_) {
for (const auto& extent : partition->extents()) {
LinearExtent* linear = extent->AsLinearExtent();
if (!linear) {
continue;
}
CHECK(linear->device_index() < device_extents.size());
auto& extents = device_extents[linear->device_index()];
extents.emplace_back(linear->device_index(), linear->physical_sector(),
linear->physical_sector() + extent->num_sectors());
}
}
// Add 0-length intervals for the first and last sectors. This will cause
// ExtentToFreeList() to treat the space in between as available.
for (size_t i = 0; i < device_extents.size(); i++) {
auto& extents = device_extents[i];
const auto& block_device = block_devices_[i];
uint64_t first_sector = block_device.first_logical_sector;
uint64_t last_sector = block_device.size / LP_SECTOR_SIZE;
extents.emplace_back(i, first_sector, first_sector);
extents.emplace_back(i, last_sector, last_sector);
std::sort(extents.begin(), extents.end());
ExtentsToFreeList(extents, &free_regions);
}
return free_regions;
}
bool MetadataBuilder::ValidatePartitionSizeChange(Partition* partition, uint64_t old_size,
uint64_t new_size, bool force_check) {
PartitionGroup* group = FindGroup(partition->group_name());
CHECK(group);
if (!force_check && new_size <= old_size) {
return true;
}
// Figure out how much we need to allocate, and whether our group has
// enough space remaining.
uint64_t space_needed = new_size - old_size;
if (group->maximum_size() > 0) {
uint64_t group_size = TotalSizeOfGroup(group);
if (group_size >= group->maximum_size() ||
group->maximum_size() - group_size < space_needed) {
LERROR << "Partition " << partition->name() << " is part of group " << group->name()
<< " which does not have enough space free (" << space_needed << " requested, "
<< group_size << " used out of " << group->maximum_size() << ")";
return false;
}
}
return true;
}
Interval Interval::Intersect(const Interval& a, const Interval& b) {
Interval ret = a;
if (a.device_index != b.device_index) {
ret.start = ret.end = a.start; // set length to 0 to indicate no intersection.
return ret;
}
ret.start = std::max(a.start, b.start);
ret.end = std::max(ret.start, std::min(a.end, b.end));
return ret;
}
std::vector<Interval> Interval::Intersect(const std::vector<Interval>& a,
const std::vector<Interval>& b) {
std::vector<Interval> ret;
for (const Interval& a_interval : a) {
for (const Interval& b_interval : b) {
auto intersect = Intersect(a_interval, b_interval);
if (intersect.length() > 0) ret.emplace_back(std::move(intersect));
}
}
return ret;
}
std::unique_ptr<Extent> Interval::AsExtent() const {
return std::make_unique<LinearExtent>(length(), device_index, start);
}
bool MetadataBuilder::GrowPartition(Partition* partition, uint64_t aligned_size,
const std::vector<Interval>& free_region_hint) {
uint64_t space_needed = aligned_size - partition->size();
uint64_t sectors_needed = space_needed / LP_SECTOR_SIZE;
DCHECK(sectors_needed * LP_SECTOR_SIZE == space_needed);
std::vector<Interval> free_regions = GetFreeRegions();
if (!free_region_hint.empty())
free_regions = Interval::Intersect(free_regions, free_region_hint);
const uint64_t sectors_per_block = geometry_.logical_block_size / LP_SECTOR_SIZE;
CHECK_NE(sectors_per_block, 0);
CHECK(sectors_needed % sectors_per_block == 0);
if (IsABDevice() && ShouldHalveSuper() && GetPartitionSlotSuffix(partition->name()) == "_b") {
// Allocate "a" partitions top-down and "b" partitions bottom-up, to
// minimize fragmentation during OTA.
free_regions = PrioritizeSecondHalfOfSuper(free_regions);
}
// Note we store new extents in a temporary vector, and only commit them
// if we are guaranteed enough free space.
std::vector<std::unique_ptr<LinearExtent>> new_extents;
// If the last extent in the partition has a size < alignment, then the
// difference is unallocatable due to being misaligned. We peek for that
// case here to avoid wasting space.
if (auto extent = ExtendFinalExtent(partition, free_regions, sectors_needed)) {
sectors_needed -= extent->num_sectors();
new_extents.emplace_back(std::move(extent));
}
for (auto& region : free_regions) {
// Note: this comes first, since we may enter the loop not needing any
// more sectors.
if (!sectors_needed) {
break;
}
if (region.length() % sectors_per_block != 0) {
// This should never happen, because it would imply that we
// once allocated an extent that was not a multiple of the
// block size. That extent would be rejected by DM_TABLE_LOAD.
LERROR << "Region " << region.start << ".." << region.end
<< " is not a multiple of the block size, " << sectors_per_block;
// If for some reason the final region is mis-sized we still want
// to be able to grow partitions. So just to be safe, round the
// region down to the nearest block.
region.end = region.start + (region.length() / sectors_per_block) * sectors_per_block;
if (!region.length()) {
continue;
}
}
uint64_t sectors = std::min(sectors_needed, region.length());
CHECK(sectors % sectors_per_block == 0);
auto extent = std::make_unique<LinearExtent>(sectors, region.device_index, region.start);
new_extents.push_back(std::move(extent));
sectors_needed -= sectors;
}
if (sectors_needed) {
LERROR << "Not enough free space to expand partition: " << partition->name();
return false;
}
// Everything succeeded, so commit the new extents.
for (auto& extent : new_extents) {
partition->AddExtent(std::move(extent));
}
return true;
}
std::vector<Interval> MetadataBuilder::PrioritizeSecondHalfOfSuper(
const std::vector<Interval>& free_list) {
const auto& super = block_devices_[0];
uint64_t first_sector = super.first_logical_sector;
uint64_t last_sector = super.size / LP_SECTOR_SIZE;
uint64_t midpoint = first_sector + (last_sector - first_sector) / 2;
// Choose an aligned sector for the midpoint. This could lead to one half
// being slightly larger than the other, but this will not restrict the
// size of partitions (it might lead to one extra extent if "B" overflows).
if (!AlignSector(super, midpoint, &midpoint)) {
LERROR << "Unexpected integer overflow aligning midpoint " << midpoint;
return free_list;
}
std::vector<Interval> first_half;
std::vector<Interval> second_half;
for (const auto& region : free_list) {
// Note: deprioritze if not the main super partition. Even though we
// don't call this for retrofit devices, we will allow adding additional
// block devices on non-retrofit devices.
if (region.device_index != 0 || region.end <= midpoint) {
first_half.emplace_back(region);
continue;
}
if (region.start < midpoint && region.end > midpoint) {
// Split this into two regions.
first_half.emplace_back(region.device_index, region.start, midpoint);
second_half.emplace_back(region.device_index, midpoint, region.end);
} else {
second_half.emplace_back(region);
}
}
second_half.insert(second_half.end(), first_half.begin(), first_half.end());
return second_half;
}
std::unique_ptr<LinearExtent> MetadataBuilder::ExtendFinalExtent(
Partition* partition, const std::vector<Interval>& free_list,
uint64_t sectors_needed) const {
if (partition->extents().empty()) {
return nullptr;
}
LinearExtent* extent = partition->extents().back()->AsLinearExtent();
if (!extent) {
return nullptr;
}
// If the sector ends where the next aligned chunk begins, then there's
// no missing gap to try and allocate.
const auto& block_device = block_devices_[extent->device_index()];
uint64_t next_aligned_sector;
if (!AlignSector(block_device, extent->end_sector(), &next_aligned_sector)) {
LERROR << "Integer overflow aligning sector " << extent->end_sector();
return nullptr;
}
if (extent->end_sector() == next_aligned_sector) {
return nullptr;
}
uint64_t num_sectors = std::min(next_aligned_sector - extent->end_sector(), sectors_needed);
auto new_extent = std::make_unique<LinearExtent>(num_sectors, extent->device_index(),
extent->end_sector());
if (IsAnyRegionAllocated(*new_extent.get()) ||
IsAnyRegionCovered(free_list, *new_extent.get())) {
LERROR << "Misaligned region " << new_extent->physical_sector() << ".."
<< new_extent->end_sector() << " was allocated or marked allocatable.";
return nullptr;
}
return new_extent;
}
bool MetadataBuilder::IsAnyRegionCovered(const std::vector<Interval>& regions,
const LinearExtent& candidate) const {
for (const auto& region : regions) {
if (candidate.OverlapsWith(region)) {
return true;
}
}
return false;
}
bool MetadataBuilder::IsAnyRegionAllocated(const LinearExtent& candidate) const {
for (const auto& partition : partitions_) {
for (const auto& extent : partition->extents()) {
LinearExtent* linear = extent->AsLinearExtent();
if (!linear) {
continue;
}
if (linear->OverlapsWith(candidate)) {
return true;
}
}
}
return false;
}
void MetadataBuilder::ShrinkPartition(Partition* partition, uint64_t aligned_size) {
partition->ShrinkTo(aligned_size);
}
std::unique_ptr<LpMetadata> MetadataBuilder::Export() {
if (!ValidatePartitionGroups()) {
return nullptr;
}
std::unique_ptr<LpMetadata> metadata = std::make_unique<LpMetadata>();
metadata->header = header_;
metadata->geometry = geometry_;
// Assign this early so the extent table can read it.
for (const auto& block_device : block_devices_) {
metadata->block_devices.emplace_back(block_device);
if (auto_slot_suffixing_) {
metadata->block_devices.back().flags |= LP_BLOCK_DEVICE_SLOT_SUFFIXED;
}
}
std::map<std::string, size_t> group_indices;
for (const auto& group : groups_) {
LpMetadataPartitionGroup out = {};
if (group->name().size() > sizeof(out.name)) {
LERROR << "Partition group name is too long: " << group->name();
return nullptr;
}
if (auto_slot_suffixing_ && group->name() != kDefaultGroup) {
out.flags |= LP_GROUP_SLOT_SUFFIXED;
}
strncpy(out.name, group->name().c_str(), sizeof(out.name));
out.maximum_size = group->maximum_size();
group_indices[group->name()] = metadata->groups.size();
metadata->groups.push_back(out);
}
// Flatten the partition and extent structures into an LpMetadata, which
// makes it very easy to validate, serialize, or pass on to device-mapper.
for (const auto& partition : partitions_) {
LpMetadataPartition part;
memset(&part, 0, sizeof(part));
if (partition->name().size() > sizeof(part.name)) {
LERROR << "Partition name is too long: " << partition->name();
return nullptr;
}
if (partition->attributes() & ~(LP_PARTITION_ATTRIBUTE_MASK)) {
LERROR << "Partition " << partition->name() << " has unsupported attribute.";
return nullptr;
}
if (partition->attributes() & LP_PARTITION_ATTRIBUTE_MASK_V1) {
static const uint16_t kMinVersion = LP_METADATA_VERSION_FOR_UPDATED_ATTR;
metadata->header.minor_version = std::max(metadata->header.minor_version, kMinVersion);
}
strncpy(part.name, partition->name().c_str(), sizeof(part.name));
part.first_extent_index = static_cast<uint32_t>(metadata->extents.size());
part.num_extents = static_cast<uint32_t>(partition->extents().size());
part.attributes = partition->attributes();
if (auto_slot_suffixing_) {
part.attributes |= LP_PARTITION_ATTR_SLOT_SUFFIXED;
}
auto iter = group_indices.find(partition->group_name());
if (iter == group_indices.end()) {
LERROR << "Partition " << partition->name() << " is a member of unknown group "
<< partition->group_name();
return nullptr;
}
part.group_index = iter->second;
for (const auto& extent : partition->extents()) {
if (!extent->AddTo(metadata.get())) {
return nullptr;
}
}
metadata->partitions.push_back(part);
}
metadata->header.partitions.num_entries = static_cast<uint32_t>(metadata->partitions.size());
metadata->header.extents.num_entries = static_cast<uint32_t>(metadata->extents.size());
metadata->header.groups.num_entries = static_cast<uint32_t>(metadata->groups.size());
metadata->header.block_devices.num_entries =
static_cast<uint32_t>(metadata->block_devices.size());
return metadata;
}
void MetadataBuilder::RequireExpandedMetadataHeader() {
if (header_.minor_version >= LP_METADATA_VERSION_FOR_EXPANDED_HEADER) {
return;
}
header_.minor_version = LP_METADATA_VERSION_FOR_EXPANDED_HEADER;
header_.header_size = sizeof(LpMetadataHeaderV1_2);
}
uint64_t MetadataBuilder::AllocatableSpace() const {
uint64_t total_size = 0;
for (const auto& block_device : block_devices_) {
total_size += block_device.size - (block_device.first_logical_sector * LP_SECTOR_SIZE);
}
return total_size;
}
uint64_t MetadataBuilder::UsedSpace() const {
uint64_t size = 0;
for (const auto& partition : partitions_) {
size += partition->size();
}
return size;
}
bool MetadataBuilder::AlignSector(const LpMetadataBlockDevice& block_device, uint64_t sector,
uint64_t* out) const {
// Note: when reading alignment info from the Kernel, we don't assume it
// is aligned to the sector size, so we round up to the nearest sector.
uint64_t lba = sector * LP_SECTOR_SIZE;
if (!AlignTo(lba, block_device.alignment, out)) {
return false;
}
if (!AlignTo(*out, LP_SECTOR_SIZE, out)) {
return false;
}
*out /= LP_SECTOR_SIZE;
return true;
}
bool MetadataBuilder::FindBlockDeviceByName(const std::string& partition_name,
uint32_t* index) const {
for (size_t i = 0; i < block_devices_.size(); i++) {
if (GetBlockDevicePartitionName(i) == partition_name) {
*index = i;
return true;
}
}
return false;
}
bool MetadataBuilder::HasBlockDevice(const std::string& partition_name) const {
uint32_t index;
return FindBlockDeviceByName(partition_name, &index);
}
bool MetadataBuilder::GetBlockDeviceInfo(const std::string& partition_name,
BlockDeviceInfo* info) const {
uint32_t index;
if (!FindBlockDeviceByName(partition_name, &index)) {
LERROR << "No device named " << partition_name;
return false;
}
info->size = block_devices_[index].size;
info->alignment = block_devices_[index].alignment;
info->alignment_offset = block_devices_[index].alignment_offset;
info->logical_block_size = geometry_.logical_block_size;
info->partition_name = partition_name;
return true;
}
bool MetadataBuilder::UpdateBlockDeviceInfo(const std::string& partition_name,
const BlockDeviceInfo& device_info) {
uint32_t index;
if (!FindBlockDeviceByName(partition_name, &index)) {
LERROR << "No device named " << partition_name;
return false;
}
return UpdateBlockDeviceInfo(index, device_info);
}
bool MetadataBuilder::UpdateBlockDeviceInfo(size_t index, const BlockDeviceInfo& device_info) {
CHECK(index < block_devices_.size());
LpMetadataBlockDevice& block_device = block_devices_[index];
if (device_info.size != block_device.size) {
LERROR << "Device size does not match (got " << device_info.size << ", expected "
<< block_device.size << ")";
return false;
}
if (geometry_.logical_block_size % device_info.logical_block_size) {
LERROR << "Device logical block size is misaligned (block size="
<< device_info.logical_block_size << ", alignment=" << geometry_.logical_block_size
<< ")";
return false;
}
// The kernel does not guarantee these values are present, so we only
// replace existing values if the new values are non-zero.
if (device_info.alignment) {
block_device.alignment = device_info.alignment;
}
if (device_info.alignment_offset) {
block_device.alignment_offset = device_info.alignment_offset;
}
return true;
}
bool MetadataBuilder::ResizePartition(Partition* partition, uint64_t requested_size,
const std::vector<Interval>& free_region_hint) {
// Align the space needed up to the nearest sector.
uint64_t aligned_size;
if (!AlignTo(requested_size, geometry_.logical_block_size, &aligned_size)) {
LERROR << "Cannot resize partition " << partition->name() << " to " << requested_size
<< " bytes; integer overflow.";
return false;
}
uint64_t old_size = partition->size();
if (!ValidatePartitionSizeChange(partition, old_size, aligned_size, false)) {
return false;
}
if (aligned_size > old_size) {
if (!GrowPartition(partition, aligned_size, free_region_hint)) {
return false;
}
} else if (aligned_size < partition->size()) {
ShrinkPartition(partition, aligned_size);
}
if (partition->size() != old_size) {
LINFO << "Partition " << partition->name() << " will resize from " << old_size
<< " bytes to " << aligned_size << " bytes";
}
return true;
}
std::vector<std::string> MetadataBuilder::ListGroups() const {
std::vector<std::string> names;
for (const auto& group : groups_) {
names.emplace_back(group->name());
}
return names;
}
void MetadataBuilder::RemoveGroupAndPartitions(std::string_view group_name) {
if (group_name == kDefaultGroup) {
// Cannot remove the default group.
return;
}
std::vector<std::string> partition_names;
for (const auto& partition : partitions_) {
if (partition->group_name() == group_name) {
partition_names.emplace_back(partition->name());
}
}
for (const auto& partition_name : partition_names) {
RemovePartition(partition_name);
}
for (auto iter = groups_.begin(); iter != groups_.end(); iter++) {
if ((*iter)->name() == group_name) {
groups_.erase(iter);
break;
}
}
}
static bool CompareBlockDevices(const LpMetadataBlockDevice& first,
const LpMetadataBlockDevice& second) {
// Note: we don't compare alignment, since it's a performance thing and
// won't affect whether old extents continue to work.
return first.first_logical_sector == second.first_logical_sector && first.size == second.size &&
android::fs_mgr::GetBlockDevicePartitionName(first) ==
android::fs_mgr::GetBlockDevicePartitionName(second);
}
bool MetadataBuilder::ImportPartitions(const LpMetadata& metadata,
const std::set<std::string>& partition_names) {
// The block device list must be identical. We do not try to be clever and
// allow ordering changes or changes that don't affect partitions. This
// process is designed to allow the most common flashing scenarios and more
// complex ones should require a wipe.
if (metadata.block_devices.size() != block_devices_.size()) {
LINFO << "Block device tables does not match.";
return false;
}
for (size_t i = 0; i < metadata.block_devices.size(); i++) {
const LpMetadataBlockDevice& old_device = metadata.block_devices[i];
const LpMetadataBlockDevice& new_device = block_devices_[i];
if (!CompareBlockDevices(old_device, new_device)) {
LINFO << "Block device tables do not match";
return false;
}
}
// Import named partitions. Note that we do not attempt to merge group
// information here. If the device changed its group names, the old
// partitions will fail to merge. The same could happen if the group
// allocation sizes change.
for (const auto& partition : metadata.partitions) {
std::string partition_name = GetPartitionName(partition);
if (partition_names.find(partition_name) == partition_names.end()) {
continue;
}
if (!ImportPartition(metadata, partition)) {
return false;
}
}
return true;
}
bool MetadataBuilder::ImportPartition(const LpMetadata& metadata,
const LpMetadataPartition& source) {
std::string partition_name = GetPartitionName(source);
Partition* partition = FindPartition(partition_name);
if (!partition) {
std::string group_name = GetPartitionGroupName(metadata.groups[source.group_index]);
partition = AddPartition(partition_name, group_name, source.attributes);
if (!partition) {
return false;
}
}
if (partition->size() > 0) {
LINFO << "Importing partition table would overwrite non-empty partition: "
<< partition_name;
return false;
}
ImportExtents(partition, metadata, source);
// Note: we've already increased the partition size by calling
// ImportExtents(). In order to figure out the size before that,
// we would have to iterate the extents and add up the linear
// segments. Instead, we just force ValidatePartitionSizeChange
// to check if the current configuration is acceptable.
if (!ValidatePartitionSizeChange(partition, partition->size(), partition->size(), true)) {
partition->RemoveExtents();
return false;
}
return true;
}
void MetadataBuilder::SetAutoSlotSuffixing() {
auto_slot_suffixing_ = true;
}
void MetadataBuilder::SetVirtualABDeviceFlag() {
RequireExpandedMetadataHeader();
header_.flags |= LP_HEADER_FLAG_VIRTUAL_AB_DEVICE;
}
bool MetadataBuilder::IsABDevice() {
return !IPropertyFetcher::GetInstance()->GetProperty("ro.boot.slot_suffix", "").empty();
}
bool MetadataBuilder::IsRetrofitDynamicPartitionsDevice() {
return IPropertyFetcher::GetInstance()->GetBoolProperty("ro.boot.dynamic_partitions_retrofit",
false);
}
bool MetadataBuilder::ShouldHalveSuper() const {
return GetBlockDevicePartitionName(0) == LP_METADATA_DEFAULT_PARTITION_NAME &&
!IPropertyFetcher::GetInstance()->GetBoolProperty("ro.virtual_ab.enabled", false);
}
bool MetadataBuilder::AddLinearExtent(Partition* partition, const std::string& block_device,
uint64_t num_sectors, uint64_t physical_sector) {
uint32_t device_index;
if (!FindBlockDeviceByName(block_device, &device_index)) {
LERROR << "Could not find backing block device for extent: " << block_device;
return false;
}
auto extent = std::make_unique<LinearExtent>(num_sectors, device_index, physical_sector);
partition->AddExtent(std::move(extent));
return true;
}
std::vector<Partition*> MetadataBuilder::ListPartitionsInGroup(std::string_view group_name) {
std::vector<Partition*> partitions;
for (const auto& partition : partitions_) {
if (partition->group_name() == group_name) {
partitions.emplace_back(partition.get());
}
}
return partitions;
}
bool MetadataBuilder::ChangePartitionGroup(Partition* partition, std::string_view group_name) {
if (!FindGroup(group_name)) {
LERROR << "Partition cannot change to unknown group: " << group_name;
return false;
}
partition->set_group_name(group_name);
return true;
}
bool MetadataBuilder::ValidatePartitionGroups() const {
for (const auto& group : groups_) {
if (!group->maximum_size()) {
continue;
}
uint64_t used = TotalSizeOfGroup(group.get());
if (used > group->maximum_size()) {
LERROR << "Partition group " << group->name() << " exceeds maximum size (" << used
<< " bytes used, maximum " << group->maximum_size() << ")";
return false;
}
}
return true;
}
bool MetadataBuilder::ChangeGroupSize(const std::string& group_name, uint64_t maximum_size) {
if (group_name == kDefaultGroup) {
LERROR << "Cannot change the size of the default group";
return false;
}
PartitionGroup* group = FindGroup(group_name);
if (!group) {
LERROR << "Cannot change size of unknown partition group: " << group_name;
return false;
}
group->set_maximum_size(maximum_size);
return true;
}
std::string MetadataBuilder::GetBlockDevicePartitionName(uint64_t index) const {
return index < block_devices_.size()
? android::fs_mgr::GetBlockDevicePartitionName(block_devices_[index])
: "";
}
uint64_t MetadataBuilder::logical_block_size() const {
return geometry_.logical_block_size;
}
bool MetadataBuilder::VerifyExtentsAgainstSourceMetadata(
const MetadataBuilder& source_metadata, uint32_t source_slot_number,
const MetadataBuilder& target_metadata, uint32_t target_slot_number,
const std::vector<std::string>& partitions) {
for (const auto& base_name : partitions) {
// Find the partition in metadata with the slot suffix.
auto target_partition_name = base_name + SlotSuffixForSlotNumber(target_slot_number);
const auto target_partition = target_metadata.FindPartition(target_partition_name);
if (!target_partition) {
LERROR << "Failed to find partition " << target_partition_name << " in metadata slot "
<< target_slot_number;
return false;
}
auto source_partition_name = base_name + SlotSuffixForSlotNumber(source_slot_number);
const auto source_partition = source_metadata.FindPartition(source_partition_name);
if (!source_partition) {
LERROR << "Failed to find partition " << source_partition << " in metadata slot "
<< source_slot_number;
return false;
}
// We expect the partitions in the target metadata to have the identical extents as the
// one in the source metadata. Because they are copied in NewForUpdate.
if (target_partition->extents().size() != source_partition->extents().size()) {
LERROR << "Extents count mismatch for partition " << base_name << " target slot has "
<< target_partition->extents().size() << ", source slot has "
<< source_partition->extents().size();
return false;
}
for (size_t i = 0; i < target_partition->extents().size(); i++) {
const auto& src_extent = *source_partition->extents()[i];
const auto& tgt_extent = *target_partition->extents()[i];
if (tgt_extent != src_extent) {
LERROR << "Extents " << i << " is different for partition " << base_name;
LERROR << "tgt extent " << tgt_extent << "; src extent " << src_extent;
return false;
}
}
}
return true;
}
} // namespace fs_mgr
} // namespace android
|