1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include <linux/memfd.h>
#include <stdio.h>
#include <sys/syscall.h>
#include <android-base/file.h>
#include <android-base/properties.h>
#include <android-base/unique_fd.h>
#include <fs_mgr.h>
#include <fstab/fstab.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <liblp/builder.h>
#include "images.h"
#include "liblp_test.h"
#include "reader.h"
#include "test_partition_opener.h"
#include "utility.h"
#include "writer.h"
using namespace std;
using namespace android::fs_mgr;
using namespace android::fs_mgr::testing;
using ::testing::_;
using ::testing::Return;
using unique_fd = android::base::unique_fd;
using android::base::GetProperty;
// Our tests assume a 128KiB disk with two 512 byte metadata slots.
static const size_t kDiskSize = 131072;
static const size_t kMetadataSize = 512;
static const size_t kMetadataSlots = 2;
static const BlockDeviceInfo kSuperInfo{"super", kDiskSize, 0, 0, 4096};
// Helper function for creating an in-memory file descriptor. This lets us
// simulate read/writing logical partition metadata as if we had a block device
// for a physical partition.
static unique_fd CreateFakeDisk(off_t size) {
unique_fd fd(syscall(__NR_memfd_create, "fake_disk", MFD_ALLOW_SEALING));
if (fd < 0) {
perror("memfd_create");
return {};
}
if (ftruncate(fd, size) < 0) {
perror("ftruncate");
return {};
}
// Prevent anything from accidentally growing/shrinking the file, as it
// would not be allowed on an actual partition.
if (fcntl(fd, F_ADD_SEALS, F_SEAL_GROW | F_SEAL_SHRINK) < 0) {
perror("fcntl");
return {};
}
// Write garbage to the "disk" so we can tell what has been zeroed or not.
unique_ptr<uint8_t[]> buffer = make_unique<uint8_t[]>(size);
memset(buffer.get(), 0xcc, size);
if (!android::base::WriteFully(fd, buffer.get(), size)) {
return {};
}
return fd;
}
// Create a disk of the default size.
static unique_fd CreateFakeDisk() {
return CreateFakeDisk(kDiskSize);
}
// Create a MetadataBuilder around some default sizes.
static unique_ptr<MetadataBuilder> CreateDefaultBuilder() {
unique_ptr<MetadataBuilder> builder =
MetadataBuilder::New(kDiskSize, kMetadataSize, kMetadataSlots);
return builder;
}
class DefaultPartitionOpener final : public TestPartitionOpener {
public:
explicit DefaultPartitionOpener(int fd)
: TestPartitionOpener({{"super", fd}}, {{"super", kSuperInfo}}) {}
};
static bool AddDefaultPartitions(MetadataBuilder* builder) {
Partition* system = builder->AddPartition("system", LP_PARTITION_ATTR_NONE);
if (!system) {
return false;
}
return builder->ResizePartition(system, 24 * 1024);
}
// Create a temporary disk and flash it with the default partition setup.
static unique_fd CreateFlashedDisk() {
unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
if (!builder || !AddDefaultPartitions(builder.get())) {
return {};
}
unique_fd fd = CreateFakeDisk();
if (fd < 0) {
return {};
}
// Export and flash.
unique_ptr<LpMetadata> exported = builder->Export();
if (!exported) {
return {};
}
DefaultPartitionOpener opener(fd);
if (!FlashPartitionTable(opener, "super", *exported.get())) {
return {};
}
return fd;
}
// Test that our CreateFakeDisk() function works.
TEST_F(LiblpTest, CreateFakeDisk) {
unique_fd fd = CreateFakeDisk();
ASSERT_GE(fd, 0);
uint64_t size;
ASSERT_TRUE(GetDescriptorSize(fd, &size));
ASSERT_EQ(size, kDiskSize);
DefaultPartitionOpener opener(fd);
// Verify that we can't read unwritten metadata.
ASSERT_EQ(ReadMetadata(opener, "super", 1), nullptr);
}
// Flashing metadata should not work if the metadata was created for a larger
// disk than the destination disk.
TEST_F(LiblpTest, ExportDiskTooSmall) {
unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(kDiskSize + 4096, 512, 2);
ASSERT_NE(builder, nullptr);
unique_ptr<LpMetadata> exported = builder->Export();
ASSERT_NE(exported, nullptr);
// A larger geometry should fail to flash, since there won't be enough
// space to store the logical partition range that was specified.
unique_fd fd = CreateFakeDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
EXPECT_FALSE(FlashPartitionTable(opener, "super", *exported.get()));
}
// Test the basics of flashing a partition and reading it back.
TEST_F(LiblpTest, FlashAndReadback) {
unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
ASSERT_NE(builder, nullptr);
ASSERT_TRUE(AddDefaultPartitions(builder.get()));
unique_fd fd = CreateFakeDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
// Export and flash.
unique_ptr<LpMetadata> exported = builder->Export();
ASSERT_NE(exported, nullptr);
ASSERT_TRUE(FlashPartitionTable(opener, "super", *exported.get()));
// Read back. Note that some fields are only filled in during
// serialization, so exported and imported will not be identical. For
// example, table sizes and checksums are computed in WritePartitionTable.
// Therefore we check on a field-by-field basis.
unique_ptr<LpMetadata> imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
// Check geometry and header.
EXPECT_EQ(exported->geometry.metadata_max_size, imported->geometry.metadata_max_size);
EXPECT_EQ(exported->geometry.metadata_slot_count, imported->geometry.metadata_slot_count);
EXPECT_EQ(exported->header.major_version, imported->header.major_version);
EXPECT_EQ(exported->header.minor_version, imported->header.minor_version);
EXPECT_EQ(exported->header.header_size, imported->header.header_size);
// Check partition tables.
ASSERT_EQ(exported->partitions.size(), imported->partitions.size());
EXPECT_EQ(GetPartitionName(exported->partitions[0]), GetPartitionName(imported->partitions[0]));
EXPECT_EQ(exported->partitions[0].attributes, imported->partitions[0].attributes);
EXPECT_EQ(exported->partitions[0].first_extent_index,
imported->partitions[0].first_extent_index);
EXPECT_EQ(exported->partitions[0].num_extents, imported->partitions[0].num_extents);
// Check extent tables.
ASSERT_EQ(exported->extents.size(), imported->extents.size());
EXPECT_EQ(exported->extents[0].num_sectors, imported->extents[0].num_sectors);
EXPECT_EQ(exported->extents[0].target_type, imported->extents[0].target_type);
EXPECT_EQ(exported->extents[0].target_data, imported->extents[0].target_data);
// Check block devices table.
ASSERT_EQ(exported->block_devices.size(), imported->block_devices.size());
EXPECT_EQ(exported->block_devices[0].first_logical_sector,
imported->block_devices[0].first_logical_sector);
}
// Test that we can update metadata slots without disturbing others.
TEST_F(LiblpTest, UpdateAnyMetadataSlot) {
unique_fd fd = CreateFlashedDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
unique_ptr<LpMetadata> imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
ASSERT_EQ(imported->partitions.size(), 1);
EXPECT_EQ(GetPartitionName(imported->partitions[0]), "system");
// Change the name before writing to the next slot.
strncpy(imported->partitions[0].name, "vendor", sizeof(imported->partitions[0].name));
ASSERT_TRUE(UpdatePartitionTable(opener, "super", *imported.get(), 1));
// Read back the original slot, make sure it hasn't changed.
imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
ASSERT_EQ(imported->partitions.size(), 1);
EXPECT_EQ(GetPartitionName(imported->partitions[0]), "system");
// Now read back the new slot, and verify that it has a different name.
imported = ReadMetadata(opener, "super", 1);
ASSERT_NE(imported, nullptr);
ASSERT_EQ(imported->partitions.size(), 1);
EXPECT_EQ(GetPartitionName(imported->partitions[0]), "vendor");
auto super_device = GetMetadataSuperBlockDevice(*imported.get());
ASSERT_NE(super_device, nullptr);
uint64_t last_sector = super_device->size / LP_SECTOR_SIZE;
// Verify that we didn't overwrite anything in the logical paritition area.
// We expect the disk to be filled with 0xcc on creation so we can read
// this back and compare it.
char expected[LP_SECTOR_SIZE];
memset(expected, 0xcc, sizeof(expected));
for (uint64_t i = super_device->first_logical_sector; i < last_sector; i++) {
char buffer[LP_SECTOR_SIZE];
ASSERT_GE(lseek(fd, i * LP_SECTOR_SIZE, SEEK_SET), 0);
ASSERT_TRUE(android::base::ReadFully(fd, buffer, sizeof(buffer)));
ASSERT_EQ(memcmp(expected, buffer, LP_SECTOR_SIZE), 0);
}
}
TEST_F(LiblpTest, InvalidMetadataSlot) {
unique_fd fd = CreateFlashedDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
// Make sure all slots are filled.
unique_ptr<LpMetadata> metadata = ReadMetadata(opener, "super", 0);
ASSERT_NE(metadata, nullptr);
for (uint32_t i = 1; i < kMetadataSlots; i++) {
ASSERT_TRUE(UpdatePartitionTable(opener, "super", *metadata.get(), i));
}
// Verify that we can't read unavailable slots.
EXPECT_EQ(ReadMetadata(opener, "super", kMetadataSlots), nullptr);
}
// Test that updating a metadata slot does not allow it to be computed based
// on mismatching geometry.
TEST_F(LiblpTest, NoChangingGeometry) {
unique_fd fd = CreateFlashedDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
unique_ptr<LpMetadata> imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
ASSERT_TRUE(UpdatePartitionTable(opener, "super", *imported.get(), 1));
imported->geometry.metadata_max_size += LP_SECTOR_SIZE;
ASSERT_FALSE(UpdatePartitionTable(opener, "super", *imported.get(), 1));
imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
imported->geometry.metadata_slot_count++;
ASSERT_FALSE(UpdatePartitionTable(opener, "super", *imported.get(), 1));
imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
ASSERT_EQ(imported->block_devices.size(), 1);
imported->block_devices[0].first_logical_sector++;
ASSERT_FALSE(UpdatePartitionTable(opener, "super", *imported.get(), 1));
imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
}
// Test that changing one bit of metadata is enough to break the checksum.
TEST_F(LiblpTest, BitFlipGeometry) {
unique_fd fd = CreateFlashedDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
LpMetadataGeometry geometry;
ASSERT_GE(lseek(fd, 0, SEEK_SET), 0);
ASSERT_TRUE(android::base::ReadFully(fd, &geometry, sizeof(geometry)));
LpMetadataGeometry bad_geometry = geometry;
bad_geometry.metadata_slot_count++;
ASSERT_TRUE(android::base::WriteFully(fd, &bad_geometry, sizeof(bad_geometry)));
unique_ptr<LpMetadata> metadata = ReadMetadata(opener, "super", 0);
ASSERT_NE(metadata, nullptr);
EXPECT_EQ(metadata->geometry.metadata_slot_count, 2);
}
TEST_F(LiblpTest, ReadBackupGeometry) {
unique_fd fd = CreateFlashedDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
char corruption[LP_METADATA_GEOMETRY_SIZE];
memset(corruption, 0xff, sizeof(corruption));
// Corrupt the primary geometry.
ASSERT_GE(lseek(fd, GetPrimaryGeometryOffset(), SEEK_SET), 0);
ASSERT_TRUE(android::base::WriteFully(fd, corruption, sizeof(corruption)));
EXPECT_NE(ReadMetadata(opener, "super", 0), nullptr);
// Corrupt the backup geometry.
ASSERT_GE(lseek(fd, GetBackupGeometryOffset(), SEEK_SET), 0);
ASSERT_TRUE(android::base::WriteFully(fd, corruption, sizeof(corruption)));
EXPECT_EQ(ReadMetadata(opener, "super", 0), nullptr);
}
TEST_F(LiblpTest, ReadBackupMetadata) {
unique_fd fd = CreateFlashedDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
unique_ptr<LpMetadata> metadata = ReadMetadata(opener, "super", 0);
char corruption[kMetadataSize];
memset(corruption, 0xff, sizeof(corruption));
off_t offset = GetPrimaryMetadataOffset(metadata->geometry, 0);
ASSERT_GE(lseek(fd, offset, SEEK_SET), 0);
ASSERT_TRUE(android::base::WriteFully(fd, corruption, sizeof(corruption)));
EXPECT_NE(ReadMetadata(opener, "super", 0), nullptr);
offset = GetBackupMetadataOffset(metadata->geometry, 0);
// Corrupt the backup metadata.
ASSERT_GE(lseek(fd, offset, SEEK_SET), 0);
ASSERT_TRUE(android::base::WriteFully(fd, corruption, sizeof(corruption)));
EXPECT_EQ(ReadMetadata(opener, "super", 0), nullptr);
}
// Test that we don't attempt to write metadata if it would overflow its
// reserved space.
TEST_F(LiblpTest, TooManyPartitions) {
unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
ASSERT_NE(builder, nullptr);
// Compute the maximum number of partitions we can fit in 512 bytes of
// metadata. By default there is the header, one partition group, and a
// block device entry.
static const size_t kMaxPartitionTableSize = kMetadataSize - sizeof(LpMetadataHeaderV1_0) -
sizeof(LpMetadataPartitionGroup) -
sizeof(LpMetadataBlockDevice);
size_t max_partitions = kMaxPartitionTableSize / sizeof(LpMetadataPartition);
// Add this number of partitions.
Partition* partition = nullptr;
for (size_t i = 0; i < max_partitions; i++) {
partition = builder->AddPartition(to_string(i), LP_PARTITION_ATTR_NONE);
ASSERT_NE(partition, nullptr);
}
unique_ptr<LpMetadata> exported = builder->Export();
ASSERT_NE(exported, nullptr);
unique_fd fd = CreateFakeDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
// Check that we are able to write our table.
ASSERT_TRUE(FlashPartitionTable(opener, "super", *exported.get()));
// Check that adding one more partition overflows the metadata allotment.
partition = builder->AddPartition("final", LP_PARTITION_ATTR_NONE);
EXPECT_NE(partition, nullptr);
exported = builder->Export();
ASSERT_NE(exported, nullptr);
// The new table should be too large to be written.
ASSERT_FALSE(UpdatePartitionTable(opener, "super", *exported.get(), 1));
auto super_device = GetMetadataSuperBlockDevice(*exported.get());
ASSERT_NE(super_device, nullptr);
// Check that the first and last logical sectors weren't touched when we
// wrote this almost-full metadata.
char expected[LP_SECTOR_SIZE];
memset(expected, 0xcc, sizeof(expected));
char buffer[LP_SECTOR_SIZE];
ASSERT_GE(lseek(fd, super_device->first_logical_sector * LP_SECTOR_SIZE, SEEK_SET), 0);
ASSERT_TRUE(android::base::ReadFully(fd, buffer, sizeof(buffer)));
EXPECT_EQ(memcmp(expected, buffer, LP_SECTOR_SIZE), 0);
}
// Test that we can read and write image files.
TEST_F(LiblpTest, ImageFiles) {
unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
ASSERT_NE(builder, nullptr);
ASSERT_TRUE(AddDefaultPartitions(builder.get()));
unique_ptr<LpMetadata> exported = builder->Export();
ASSERT_NE(exported, nullptr);
unique_fd fd(syscall(__NR_memfd_create, "image_file", 0));
ASSERT_GE(fd, 0);
ASSERT_TRUE(WriteToImageFile(fd, *exported.get()));
unique_ptr<LpMetadata> imported = ReadFromImageFile(fd);
ASSERT_NE(imported, nullptr);
}
// Test that we can read images from buffers.
TEST_F(LiblpTest, ImageFilesInMemory) {
unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
ASSERT_NE(builder, nullptr);
ASSERT_TRUE(AddDefaultPartitions(builder.get()));
unique_ptr<LpMetadata> exported = builder->Export();
unique_fd fd(syscall(__NR_memfd_create, "image_file", 0));
ASSERT_GE(fd, 0);
ASSERT_TRUE(WriteToImageFile(fd, *exported.get()));
int64_t offset = SeekFile64(fd, 0, SEEK_CUR);
ASSERT_GE(offset, 0);
ASSERT_EQ(SeekFile64(fd, 0, SEEK_SET), 0);
size_t bytes = static_cast<size_t>(offset);
std::unique_ptr<char[]> buffer = std::make_unique<char[]>(bytes);
ASSERT_TRUE(android::base::ReadFully(fd, buffer.get(), bytes));
ASSERT_NE(ReadFromImageBlob(buffer.get(), bytes), nullptr);
}
class BadWriter {
public:
// When requested, write garbage instead of the requested bytes, then
// return false.
bool operator()(int fd, const std::string& blob) {
write_count_++;
if (write_count_ == fail_on_write_) {
std::unique_ptr<char[]> new_data = std::make_unique<char[]>(blob.size());
memset(new_data.get(), 0xe5, blob.size());
EXPECT_TRUE(android::base::WriteFully(fd, new_data.get(), blob.size()));
return false;
} else {
if (!android::base::WriteFully(fd, blob.data(), blob.size())) {
return false;
}
return fail_after_write_ != write_count_;
}
}
void Reset() {
fail_on_write_ = 0;
fail_after_write_ = 0;
write_count_ = 0;
}
void FailOnWrite(int number) {
Reset();
fail_on_write_ = number;
}
void FailAfterWrite(int number) {
Reset();
fail_after_write_ = number;
}
private:
int fail_on_write_ = 0;
int fail_after_write_ = 0;
int write_count_ = 0;
};
// Test that an interrupted flash operation on the "primary" copy of metadata
// is not fatal.
TEST_F(LiblpTest, UpdatePrimaryMetadataFailure) {
unique_fd fd = CreateFlashedDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
BadWriter writer;
// Read and write it back.
writer.FailOnWrite(1);
unique_ptr<LpMetadata> imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
ASSERT_FALSE(UpdatePartitionTable(opener, "super", *imported.get(), 0, writer));
// We should still be able to read the backup copy.
imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
// Flash again, this time fail the backup copy. We should still be able
// to read the primary.
writer.FailOnWrite(3);
ASSERT_FALSE(UpdatePartitionTable(opener, "super", *imported.get(), 0, writer));
imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
}
// Test that an interrupted flash operation on the "backup" copy of metadata
// is not fatal.
TEST_F(LiblpTest, UpdateBackupMetadataFailure) {
unique_fd fd = CreateFlashedDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
BadWriter writer;
// Read and write it back.
writer.FailOnWrite(2);
unique_ptr<LpMetadata> imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
ASSERT_FALSE(UpdatePartitionTable(opener, "super", *imported.get(), 0, writer));
// We should still be able to read the primary copy.
imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
// Flash again, this time fail the primary copy. We should still be able
// to read the primary.
writer.FailOnWrite(2);
ASSERT_FALSE(UpdatePartitionTable(opener, "super", *imported.get(), 0, writer));
imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
}
// Test that an interrupted write *in between* writing metadata will read
// the correct metadata copy. The primary is always considered newer than
// the backup.
TEST_F(LiblpTest, UpdateMetadataCleanFailure) {
unique_fd fd = CreateFlashedDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
BadWriter writer;
// Change the name of the existing partition.
unique_ptr<LpMetadata> new_table = ReadMetadata(opener, "super", 0);
ASSERT_NE(new_table, nullptr);
ASSERT_GE(new_table->partitions.size(), 1);
new_table->partitions[0].name[0]++;
// Flash it, but fail to write the backup copy.
writer.FailAfterWrite(2);
ASSERT_FALSE(UpdatePartitionTable(opener, "super", *new_table.get(), 0, writer));
// When we read back, we should get the updated primary copy.
unique_ptr<LpMetadata> imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
ASSERT_GE(new_table->partitions.size(), 1);
ASSERT_EQ(GetPartitionName(new_table->partitions[0]), GetPartitionName(imported->partitions[0]));
// Flash again. After, the backup and primary copy should be coherent.
// Note that the sync step should have used the primary to sync, not
// the backup.
writer.Reset();
ASSERT_TRUE(UpdatePartitionTable(opener, "super", *new_table.get(), 0, writer));
imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
ASSERT_GE(new_table->partitions.size(), 1);
ASSERT_EQ(GetPartitionName(new_table->partitions[0]), GetPartitionName(imported->partitions[0]));
}
// Test that writing a sparse image can be read back.
TEST_F(LiblpTest, FlashSparseImage) {
unique_fd fd = CreateFakeDisk();
ASSERT_GE(fd, 0);
BlockDeviceInfo device_info("super", kDiskSize, 0, 0, 512);
unique_ptr<MetadataBuilder> builder =
MetadataBuilder::New(device_info, kMetadataSize, kMetadataSlots);
ASSERT_NE(builder, nullptr);
ASSERT_TRUE(AddDefaultPartitions(builder.get()));
unique_ptr<LpMetadata> exported = builder->Export();
ASSERT_NE(exported, nullptr);
// Build the sparse file.
ImageBuilder sparse(*exported.get(), 512, {}, true /* sparsify */);
ASSERT_TRUE(sparse.IsValid());
ASSERT_TRUE(sparse.Build());
const auto& images = sparse.device_images();
ASSERT_EQ(images.size(), static_cast<size_t>(1));
// Write it to the fake disk.
ASSERT_NE(lseek(fd.get(), 0, SEEK_SET), -1);
int ret = sparse_file_write(images[0].get(), fd.get(), false, false, false);
ASSERT_EQ(ret, 0);
// Verify that we can read both sets of metadata.
LpMetadataGeometry geometry;
ASSERT_TRUE(ReadPrimaryGeometry(fd.get(), &geometry));
ASSERT_TRUE(ReadBackupGeometry(fd.get(), &geometry));
ASSERT_NE(ReadPrimaryMetadata(fd.get(), geometry, 0), nullptr);
ASSERT_NE(ReadBackupMetadata(fd.get(), geometry, 0), nullptr);
}
TEST_F(LiblpTest, AutoSlotSuffixing) {
unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
ASSERT_NE(builder, nullptr);
ASSERT_TRUE(AddDefaultPartitions(builder.get()));
ASSERT_TRUE(builder->AddGroup("example", 0));
builder->SetAutoSlotSuffixing();
auto fd = CreateFakeDisk();
ASSERT_GE(fd, 0);
// Note: we bind the same fd to both names, since we want to make sure the
// exact same bits are getting read back in each test.
TestPartitionOpener opener({{"super_a", fd}, {"super_b", fd}},
{{"super_a", kSuperInfo}, {"super_b", kSuperInfo}});
auto exported = builder->Export();
ASSERT_NE(exported, nullptr);
ASSERT_TRUE(FlashPartitionTable(opener, "super_a", *exported.get()));
auto metadata = ReadMetadata(opener, "super_b", 1);
ASSERT_NE(metadata, nullptr);
ASSERT_EQ(metadata->partitions.size(), static_cast<size_t>(1));
EXPECT_EQ(GetPartitionName(metadata->partitions[0]), "system_b");
ASSERT_EQ(metadata->block_devices.size(), static_cast<size_t>(1));
EXPECT_EQ(GetBlockDevicePartitionName(metadata->block_devices[0]), "super_b");
ASSERT_EQ(metadata->groups.size(), static_cast<size_t>(2));
EXPECT_EQ(GetPartitionGroupName(metadata->groups[0]), "default");
EXPECT_EQ(GetPartitionGroupName(metadata->groups[1]), "example_b");
EXPECT_EQ(metadata->groups[0].flags, 0);
EXPECT_EQ(metadata->groups[1].flags, 0);
metadata = ReadMetadata(opener, "super_a", 0);
ASSERT_NE(metadata, nullptr);
ASSERT_EQ(metadata->partitions.size(), static_cast<size_t>(1));
EXPECT_EQ(GetPartitionName(metadata->partitions[0]), "system_a");
ASSERT_EQ(metadata->block_devices.size(), static_cast<size_t>(1));
EXPECT_EQ(GetBlockDevicePartitionName(metadata->block_devices[0]), "super_a");
ASSERT_EQ(metadata->groups.size(), static_cast<size_t>(2));
EXPECT_EQ(GetPartitionGroupName(metadata->groups[0]), "default");
EXPECT_EQ(GetPartitionGroupName(metadata->groups[1]), "example_a");
EXPECT_EQ(metadata->groups[0].flags, 0);
EXPECT_EQ(metadata->groups[1].flags, 0);
}
TEST_F(LiblpTest, UpdateRetrofit) {
ON_CALL(*GetMockedPropertyFetcher(), GetBoolProperty("ro.boot.dynamic_partitions_retrofit", _))
.WillByDefault(Return(true));
unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
ASSERT_NE(builder, nullptr);
ASSERT_TRUE(AddDefaultPartitions(builder.get()));
ASSERT_TRUE(builder->AddGroup("example", 0));
builder->SetAutoSlotSuffixing();
auto fd = CreateFakeDisk();
ASSERT_GE(fd, 0);
// Note: we bind the same fd to both names, since we want to make sure the
// exact same bits are getting read back in each test.
TestPartitionOpener opener({{"super_a", fd}, {"super_b", fd}},
{{"super_a", kSuperInfo}, {"super_b", kSuperInfo}});
auto exported = builder->Export();
ASSERT_NE(exported, nullptr);
ASSERT_TRUE(FlashPartitionTable(opener, "super_a", *exported.get()));
builder = MetadataBuilder::NewForUpdate(opener, "super_a", 0, 1);
ASSERT_NE(builder, nullptr);
auto updated = builder->Export();
ASSERT_NE(updated, nullptr);
ASSERT_EQ(updated->block_devices.size(), static_cast<size_t>(1));
EXPECT_EQ(GetBlockDevicePartitionName(updated->block_devices[0]), "super_b");
ASSERT_TRUE(updated->groups.empty());
ASSERT_TRUE(updated->partitions.empty());
ASSERT_TRUE(updated->extents.empty());
}
TEST_F(LiblpTest, UpdateNonRetrofit) {
ON_CALL(*GetMockedPropertyFetcher(), GetBoolProperty("ro.boot.dynamic_partitions_retrofit", _))
.WillByDefault(Return(false));
unique_fd fd = CreateFlashedDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
auto builder = MetadataBuilder::NewForUpdate(opener, "super", 0, 1);
ASSERT_NE(builder, nullptr);
auto updated = builder->Export();
ASSERT_NE(updated, nullptr);
ASSERT_EQ(updated->block_devices.size(), static_cast<size_t>(1));
EXPECT_EQ(GetBlockDevicePartitionName(updated->block_devices[0]), "super");
}
TEST_F(LiblpTest, UpdateVirtualAB) {
ON_CALL(*GetMockedPropertyFetcher(), GetBoolProperty("ro.virtual_ab.enabled", _))
.WillByDefault(Return(true));
unique_fd fd = CreateFlashedDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
auto builder = MetadataBuilder::NewForUpdate(opener, "super", 0, 1);
ASSERT_NE(builder, nullptr);
auto updated = builder->Export();
ASSERT_NE(updated, nullptr);
ASSERT_TRUE(UpdatePartitionTable(opener, "super", *updated.get(), 1));
// Validate old slot.
auto metadata = ReadMetadata(opener, "super", 0);
ASSERT_NE(metadata, nullptr);
ASSERT_EQ(metadata->header.minor_version, 0);
ASSERT_GE(metadata->partitions.size(), 1);
ASSERT_EQ(metadata->partitions[0].attributes & LP_PARTITION_ATTR_UPDATED, 0);
// Validate new slot.
metadata = ReadMetadata(opener, "super", 1);
ASSERT_NE(metadata, nullptr);
ASSERT_EQ(metadata->header.minor_version, 1);
ASSERT_GE(metadata->partitions.size(), 1);
ASSERT_NE(metadata->partitions[0].attributes & LP_PARTITION_ATTR_UPDATED, 0);
}
TEST_F(LiblpTest, ReadExpandedHeader) {
unique_ptr<MetadataBuilder> builder = CreateDefaultBuilder();
ASSERT_NE(builder, nullptr);
ASSERT_TRUE(AddDefaultPartitions(builder.get()));
builder->RequireExpandedMetadataHeader();
unique_fd fd = CreateFakeDisk();
ASSERT_GE(fd, 0);
DefaultPartitionOpener opener(fd);
// Export and flash.
unique_ptr<LpMetadata> exported = builder->Export();
ASSERT_NE(exported, nullptr);
exported->header.flags = 0x5e5e5e5e;
ASSERT_TRUE(FlashPartitionTable(opener, "super", *exported.get()));
unique_ptr<LpMetadata> imported = ReadMetadata(opener, "super", 0);
ASSERT_NE(imported, nullptr);
EXPECT_EQ(imported->header.header_size, sizeof(LpMetadataHeaderV1_2));
EXPECT_EQ(imported->header.header_size, exported->header.header_size);
EXPECT_EQ(imported->header.flags, exported->header.flags);
}
|