1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
|
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This file contains the functions that initialize SELinux during boot as well as helper functions
// for SELinux operation for init.
// When the system boots, there is no SEPolicy present and init is running in the kernel domain.
// Init loads the SEPolicy from the file system, restores the context of /system/bin/init based on
// this SEPolicy, and finally exec()'s itself to run in the proper domain.
// The SEPolicy on Android comes in two variants: monolithic and split.
// The monolithic policy variant is for legacy non-treble devices that contain a single SEPolicy
// file located at /sepolicy and is directly loaded into the kernel SELinux subsystem.
// The split policy is for supporting treble devices. It splits the SEPolicy across files on
// /system/etc/selinux (the 'plat' portion of the policy) and /vendor/etc/selinux (the 'vendor'
// portion of the policy). This is necessary to allow the system image to be updated independently
// of the vendor image, while maintaining contributions from both partitions in the SEPolicy. This
// is especially important for VTS testing, where the SEPolicy on the Google System Image may not be
// identical to the system image shipped on a vendor's device.
// The split SEPolicy is loaded as described below:
// 1) There is a precompiled SEPolicy located at either /vendor/etc/selinux/precompiled_sepolicy or
// /odm/etc/selinux/precompiled_sepolicy if odm parition is present. Stored along with this file
// are the sha256 hashes of the parts of the SEPolicy on /system, /system_ext and /product that
// were used to compile this precompiled policy. The system partition contains a similar sha256
// of the parts of the SEPolicy that it currently contains. Symmetrically, system_ext and
// product paritition contain sha256 hashes of their SEPolicy. The init loads this
// precompiled_sepolicy directly if and only if the hashes along with the precompiled SEPolicy on
// /vendor or /odm match the hashes for system, system_ext and product SEPolicy, respectively.
// 2) If these hashes do not match, then either /system or /system_ext or /product (or some of them)
// have been updated out of sync with /vendor (or /odm if it is present) and the init needs to
// compile the SEPolicy. /system contains the SEPolicy compiler, secilc, and it is used by the
// OpenSplitPolicy() function below to compile the SEPolicy to a temp directory and load it.
// That function contains even more documentation with the specific implementation details of how
// the SEPolicy is compiled if needed.
#include "selinux.h"
#include <android/api-level.h>
#include <fcntl.h>
#include <linux/audit.h>
#include <linux/netlink.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>
#include <android-base/chrono_utils.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/result.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <fs_avb/fs_avb.h>
#include <fs_mgr.h>
#include <libgsi/libgsi.h>
#include <libsnapshot/snapshot.h>
#include <selinux/android.h>
#include "block_dev_initializer.h"
#include "debug_ramdisk.h"
#include "reboot_utils.h"
#include "snapuserd_transition.h"
#include "util.h"
using namespace std::string_literals;
using android::base::ParseInt;
using android::base::Timer;
using android::base::unique_fd;
using android::fs_mgr::AvbHandle;
using android::snapshot::SnapshotManager;
namespace android {
namespace init {
namespace {
enum EnforcingStatus { SELINUX_PERMISSIVE, SELINUX_ENFORCING };
EnforcingStatus StatusFromProperty() {
std::string value;
if (android::fs_mgr::GetKernelCmdline("androidboot.selinux", &value) && value == "permissive") {
return SELINUX_PERMISSIVE;
}
if (android::fs_mgr::GetBootconfig("androidboot.selinux", &value) && value == "permissive") {
return SELINUX_PERMISSIVE;
}
return SELINUX_ENFORCING;
}
bool IsEnforcing() {
if (ALLOW_PERMISSIVE_SELINUX) {
return StatusFromProperty() == SELINUX_ENFORCING;
}
return true;
}
// Forks, executes the provided program in the child, and waits for the completion in the parent.
// Child's stderr is captured and logged using LOG(ERROR).
bool ForkExecveAndWaitForCompletion(const char* filename, char* const argv[]) {
// Create a pipe used for redirecting child process's output.
// * pipe_fds[0] is the FD the parent will use for reading.
// * pipe_fds[1] is the FD the child will use for writing.
int pipe_fds[2];
if (pipe(pipe_fds) == -1) {
PLOG(ERROR) << "Failed to create pipe";
return false;
}
pid_t child_pid = fork();
if (child_pid == -1) {
PLOG(ERROR) << "Failed to fork for " << filename;
return false;
}
if (child_pid == 0) {
// fork succeeded -- this is executing in the child process
// Close the pipe FD not used by this process
close(pipe_fds[0]);
// Redirect stderr to the pipe FD provided by the parent
if (TEMP_FAILURE_RETRY(dup2(pipe_fds[1], STDERR_FILENO)) == -1) {
PLOG(ERROR) << "Failed to redirect stderr of " << filename;
_exit(127);
return false;
}
close(pipe_fds[1]);
if (execv(filename, argv) == -1) {
PLOG(ERROR) << "Failed to execve " << filename;
return false;
}
// Unreachable because execve will have succeeded and replaced this code
// with child process's code.
_exit(127);
return false;
} else {
// fork succeeded -- this is executing in the original/parent process
// Close the pipe FD not used by this process
close(pipe_fds[1]);
// Log the redirected output of the child process.
// It's unfortunate that there's no standard way to obtain an istream for a file descriptor.
// As a result, we're buffering all output and logging it in one go at the end of the
// invocation, instead of logging it as it comes in.
const int child_out_fd = pipe_fds[0];
std::string child_output;
if (!android::base::ReadFdToString(child_out_fd, &child_output)) {
PLOG(ERROR) << "Failed to capture full output of " << filename;
}
close(child_out_fd);
if (!child_output.empty()) {
// Log captured output, line by line, because LOG expects to be invoked for each line
std::istringstream in(child_output);
std::string line;
while (std::getline(in, line)) {
LOG(ERROR) << filename << ": " << line;
}
}
// Wait for child to terminate
int status;
if (TEMP_FAILURE_RETRY(waitpid(child_pid, &status, 0)) != child_pid) {
PLOG(ERROR) << "Failed to wait for " << filename;
return false;
}
if (WIFEXITED(status)) {
int status_code = WEXITSTATUS(status);
if (status_code == 0) {
return true;
} else {
LOG(ERROR) << filename << " exited with status " << status_code;
}
} else if (WIFSIGNALED(status)) {
LOG(ERROR) << filename << " killed by signal " << WTERMSIG(status);
} else if (WIFSTOPPED(status)) {
LOG(ERROR) << filename << " stopped by signal " << WSTOPSIG(status);
} else {
LOG(ERROR) << "waitpid for " << filename << " returned unexpected status: " << status;
}
return false;
}
}
bool ReadFirstLine(const char* file, std::string* line) {
line->clear();
std::string contents;
if (!android::base::ReadFileToString(file, &contents, true /* follow symlinks */)) {
return false;
}
std::istringstream in(contents);
std::getline(in, *line);
return true;
}
Result<std::string> FindPrecompiledSplitPolicy() {
std::string precompiled_sepolicy;
// If there is an odm partition, precompiled_sepolicy will be in
// odm/etc/selinux. Otherwise it will be in vendor/etc/selinux.
static constexpr const char vendor_precompiled_sepolicy[] =
"/vendor/etc/selinux/precompiled_sepolicy";
static constexpr const char odm_precompiled_sepolicy[] =
"/odm/etc/selinux/precompiled_sepolicy";
if (access(odm_precompiled_sepolicy, R_OK) == 0) {
precompiled_sepolicy = odm_precompiled_sepolicy;
} else if (access(vendor_precompiled_sepolicy, R_OK) == 0) {
precompiled_sepolicy = vendor_precompiled_sepolicy;
} else {
return ErrnoError() << "No precompiled sepolicy at " << vendor_precompiled_sepolicy;
}
// Use precompiled sepolicy only when all corresponding hashes are equal.
std::vector<std::pair<std::string, std::string>> sepolicy_hashes{
{"/system/etc/selinux/plat_sepolicy_and_mapping.sha256",
precompiled_sepolicy + ".plat_sepolicy_and_mapping.sha256"},
{"/system_ext/etc/selinux/system_ext_sepolicy_and_mapping.sha256",
precompiled_sepolicy + ".system_ext_sepolicy_and_mapping.sha256"},
{"/product/etc/selinux/product_sepolicy_and_mapping.sha256",
precompiled_sepolicy + ".product_sepolicy_and_mapping.sha256"},
};
for (const auto& [actual_id_path, precompiled_id_path] : sepolicy_hashes) {
// Both of them should exist or both of them shouldn't exist.
if (access(actual_id_path.c_str(), R_OK) != 0) {
if (access(precompiled_id_path.c_str(), R_OK) == 0) {
return Error() << precompiled_id_path << " exists but " << actual_id_path
<< " doesn't";
}
continue;
}
std::string actual_id;
if (!ReadFirstLine(actual_id_path.c_str(), &actual_id)) {
return ErrnoError() << "Failed to read " << actual_id_path;
}
std::string precompiled_id;
if (!ReadFirstLine(precompiled_id_path.c_str(), &precompiled_id)) {
return ErrnoError() << "Failed to read " << precompiled_id_path;
}
if (actual_id.empty() || actual_id != precompiled_id) {
return Error() << actual_id_path << " and " << precompiled_id_path << " differ";
}
}
return precompiled_sepolicy;
}
bool GetVendorMappingVersion(std::string* plat_vers) {
if (!ReadFirstLine("/vendor/etc/selinux/plat_sepolicy_vers.txt", plat_vers)) {
PLOG(ERROR) << "Failed to read /vendor/etc/selinux/plat_sepolicy_vers.txt";
return false;
}
if (plat_vers->empty()) {
LOG(ERROR) << "No version present in plat_sepolicy_vers.txt";
return false;
}
return true;
}
constexpr const char plat_policy_cil_file[] = "/system/etc/selinux/plat_sepolicy.cil";
bool IsSplitPolicyDevice() {
return access(plat_policy_cil_file, R_OK) != -1;
}
std::optional<const char*> GetUserdebugPlatformPolicyFile() {
// See if we need to load userdebug_plat_sepolicy.cil instead of plat_sepolicy.cil.
const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE");
if (force_debuggable_env && "true"s == force_debuggable_env && AvbHandle::IsDeviceUnlocked()) {
const std::vector<const char*> debug_policy_candidates = {
#if INSTALL_DEBUG_POLICY_TO_SYSTEM_EXT == 1
"/system_ext/etc/selinux/userdebug_plat_sepolicy.cil",
#endif
kDebugRamdiskSEPolicy,
};
for (const char* debug_policy : debug_policy_candidates) {
if (access(debug_policy, F_OK) == 0) {
return debug_policy;
}
}
}
return std::nullopt;
}
struct PolicyFile {
unique_fd fd;
std::string path;
};
bool OpenSplitPolicy(PolicyFile* policy_file) {
// IMPLEMENTATION NOTE: Split policy consists of three or more CIL files:
// * platform -- policy needed due to logic contained in the system image,
// * vendor -- policy needed due to logic contained in the vendor image,
// * mapping -- mapping policy which helps preserve forward-compatibility of non-platform policy
// with newer versions of platform policy.
// * (optional) policy needed due to logic on product, system_ext, or odm images.
// secilc is invoked to compile the above three policy files into a single monolithic policy
// file. This file is then loaded into the kernel.
const auto userdebug_plat_sepolicy = GetUserdebugPlatformPolicyFile();
const bool use_userdebug_policy = userdebug_plat_sepolicy.has_value();
if (use_userdebug_policy) {
LOG(INFO) << "Using userdebug system sepolicy " << *userdebug_plat_sepolicy;
}
// Load precompiled policy from vendor image, if a matching policy is found there. The policy
// must match the platform policy on the system image.
// use_userdebug_policy requires compiling sepolicy with userdebug_plat_sepolicy.cil.
// Thus it cannot use the precompiled policy from vendor image.
if (!use_userdebug_policy) {
if (auto res = FindPrecompiledSplitPolicy(); res.ok()) {
unique_fd fd(open(res->c_str(), O_RDONLY | O_CLOEXEC | O_BINARY));
if (fd != -1) {
policy_file->fd = std::move(fd);
policy_file->path = std::move(*res);
return true;
}
} else {
LOG(INFO) << res.error();
}
}
// No suitable precompiled policy could be loaded
LOG(INFO) << "Compiling SELinux policy";
// We store the output of the compilation on /dev because this is the most convenient tmpfs
// storage mount available this early in the boot sequence.
char compiled_sepolicy[] = "/dev/sepolicy.XXXXXX";
unique_fd compiled_sepolicy_fd(mkostemp(compiled_sepolicy, O_CLOEXEC));
if (compiled_sepolicy_fd < 0) {
PLOG(ERROR) << "Failed to create temporary file " << compiled_sepolicy;
return false;
}
// Determine which mapping file to include
std::string vend_plat_vers;
if (!GetVendorMappingVersion(&vend_plat_vers)) {
return false;
}
std::string plat_mapping_file("/system/etc/selinux/mapping/" + vend_plat_vers + ".cil");
std::string plat_compat_cil_file("/system/etc/selinux/mapping/" + vend_plat_vers +
".compat.cil");
if (access(plat_compat_cil_file.c_str(), F_OK) == -1) {
plat_compat_cil_file.clear();
}
std::string system_ext_policy_cil_file("/system_ext/etc/selinux/system_ext_sepolicy.cil");
if (access(system_ext_policy_cil_file.c_str(), F_OK) == -1) {
system_ext_policy_cil_file.clear();
}
std::string system_ext_mapping_file("/system_ext/etc/selinux/mapping/" + vend_plat_vers +
".cil");
if (access(system_ext_mapping_file.c_str(), F_OK) == -1) {
system_ext_mapping_file.clear();
}
std::string system_ext_compat_cil_file("/system_ext/etc/selinux/mapping/" + vend_plat_vers +
".compat.cil");
if (access(system_ext_compat_cil_file.c_str(), F_OK) == -1) {
system_ext_compat_cil_file.clear();
}
std::string product_policy_cil_file("/product/etc/selinux/product_sepolicy.cil");
if (access(product_policy_cil_file.c_str(), F_OK) == -1) {
product_policy_cil_file.clear();
}
std::string product_mapping_file("/product/etc/selinux/mapping/" + vend_plat_vers + ".cil");
if (access(product_mapping_file.c_str(), F_OK) == -1) {
product_mapping_file.clear();
}
std::string vendor_policy_cil_file("/vendor/etc/selinux/vendor_sepolicy.cil");
if (access(vendor_policy_cil_file.c_str(), F_OK) == -1) {
LOG(ERROR) << "Missing " << vendor_policy_cil_file;
return false;
}
std::string plat_pub_versioned_cil_file("/vendor/etc/selinux/plat_pub_versioned.cil");
if (access(plat_pub_versioned_cil_file.c_str(), F_OK) == -1) {
LOG(ERROR) << "Missing " << plat_pub_versioned_cil_file;
return false;
}
// odm_sepolicy.cil is default but optional.
std::string odm_policy_cil_file("/odm/etc/selinux/odm_sepolicy.cil");
if (access(odm_policy_cil_file.c_str(), F_OK) == -1) {
odm_policy_cil_file.clear();
}
const std::string version_as_string = std::to_string(SEPOLICY_VERSION);
// clang-format off
std::vector<const char*> compile_args {
"/system/bin/secilc",
use_userdebug_policy ? *userdebug_plat_sepolicy : plat_policy_cil_file,
"-m", "-M", "true", "-G", "-N",
"-c", version_as_string.c_str(),
plat_mapping_file.c_str(),
"-o", compiled_sepolicy,
// We don't care about file_contexts output by the compiler
"-f", "/sys/fs/selinux/null", // /dev/null is not yet available
};
// clang-format on
if (!plat_compat_cil_file.empty()) {
compile_args.push_back(plat_compat_cil_file.c_str());
}
if (!system_ext_policy_cil_file.empty()) {
compile_args.push_back(system_ext_policy_cil_file.c_str());
}
if (!system_ext_mapping_file.empty()) {
compile_args.push_back(system_ext_mapping_file.c_str());
}
if (!system_ext_compat_cil_file.empty()) {
compile_args.push_back(system_ext_compat_cil_file.c_str());
}
if (!product_policy_cil_file.empty()) {
compile_args.push_back(product_policy_cil_file.c_str());
}
if (!product_mapping_file.empty()) {
compile_args.push_back(product_mapping_file.c_str());
}
if (!plat_pub_versioned_cil_file.empty()) {
compile_args.push_back(plat_pub_versioned_cil_file.c_str());
}
if (!vendor_policy_cil_file.empty()) {
compile_args.push_back(vendor_policy_cil_file.c_str());
}
if (!odm_policy_cil_file.empty()) {
compile_args.push_back(odm_policy_cil_file.c_str());
}
compile_args.push_back(nullptr);
if (!ForkExecveAndWaitForCompletion(compile_args[0], (char**)compile_args.data())) {
unlink(compiled_sepolicy);
return false;
}
unlink(compiled_sepolicy);
policy_file->fd = std::move(compiled_sepolicy_fd);
policy_file->path = compiled_sepolicy;
return true;
}
bool OpenMonolithicPolicy(PolicyFile* policy_file) {
static constexpr char kSepolicyFile[] = "/sepolicy";
LOG(INFO) << "Opening SELinux policy from monolithic file " << kSepolicyFile;
policy_file->fd.reset(open(kSepolicyFile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW));
if (policy_file->fd < 0) {
PLOG(ERROR) << "Failed to open monolithic SELinux policy";
return false;
}
policy_file->path = kSepolicyFile;
return true;
}
void ReadPolicy(std::string* policy) {
PolicyFile policy_file;
bool ok = IsSplitPolicyDevice() ? OpenSplitPolicy(&policy_file)
: OpenMonolithicPolicy(&policy_file);
if (!ok) {
LOG(FATAL) << "Unable to open SELinux policy";
}
if (!android::base::ReadFdToString(policy_file.fd, policy)) {
PLOG(FATAL) << "Failed to read policy file: " << policy_file.path;
}
}
void SelinuxSetEnforcement() {
bool kernel_enforcing = (security_getenforce() == 1);
bool is_enforcing = IsEnforcing();
if (kernel_enforcing != is_enforcing) {
if (security_setenforce(is_enforcing)) {
PLOG(FATAL) << "security_setenforce(" << (is_enforcing ? "true" : "false")
<< ") failed";
}
}
if (auto result = WriteFile("/sys/fs/selinux/checkreqprot", "0"); !result.ok()) {
LOG(FATAL) << "Unable to write to /sys/fs/selinux/checkreqprot: " << result.error();
}
}
constexpr size_t kKlogMessageSize = 1024;
void SelinuxAvcLog(char* buf) {
struct NetlinkMessage {
nlmsghdr hdr;
char buf[kKlogMessageSize];
} request = {};
request.hdr.nlmsg_flags = NLM_F_REQUEST;
request.hdr.nlmsg_type = AUDIT_USER_AVC;
request.hdr.nlmsg_len = sizeof(request);
strlcpy(request.buf, buf, sizeof(request.buf));
auto fd = unique_fd{socket(PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_AUDIT)};
if (!fd.ok()) {
return;
}
TEMP_FAILURE_RETRY(send(fd.get(), &request, sizeof(request), 0));
}
int RestoreconIfExists(const char* path, unsigned int flags) {
if (access(path, F_OK) != 0 && errno == ENOENT) {
// Avoid error message for path that is expected to not always exist.
return 0;
}
return selinux_android_restorecon(path, flags);
}
} // namespace
void SelinuxRestoreContext() {
LOG(INFO) << "Running restorecon...";
selinux_android_restorecon("/dev", 0);
selinux_android_restorecon("/dev/console", 0);
selinux_android_restorecon("/dev/kmsg", 0);
if constexpr (WORLD_WRITABLE_KMSG) {
selinux_android_restorecon("/dev/kmsg_debug", 0);
}
selinux_android_restorecon("/dev/null", 0);
selinux_android_restorecon("/dev/ptmx", 0);
selinux_android_restorecon("/dev/socket", 0);
selinux_android_restorecon("/dev/random", 0);
selinux_android_restorecon("/dev/urandom", 0);
selinux_android_restorecon("/dev/__properties__", 0);
selinux_android_restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE);
selinux_android_restorecon("/dev/dm-user", SELINUX_ANDROID_RESTORECON_RECURSE);
selinux_android_restorecon("/dev/device-mapper", 0);
selinux_android_restorecon("/apex", 0);
selinux_android_restorecon("/bootstrap-apex", 0);
selinux_android_restorecon("/linkerconfig", 0);
// adb remount, snapshot-based updates, and DSUs all create files during
// first-stage init.
RestoreconIfExists(SnapshotManager::GetGlobalRollbackIndicatorPath().c_str(), 0);
RestoreconIfExists("/metadata/gsi",
SELINUX_ANDROID_RESTORECON_RECURSE | SELINUX_ANDROID_RESTORECON_SKIP_SEHASH);
}
int SelinuxKlogCallback(int type, const char* fmt, ...) {
android::base::LogSeverity severity = android::base::ERROR;
if (type == SELINUX_WARNING) {
severity = android::base::WARNING;
} else if (type == SELINUX_INFO) {
severity = android::base::INFO;
}
char buf[kKlogMessageSize];
va_list ap;
va_start(ap, fmt);
int length_written = vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
if (length_written <= 0) {
return 0;
}
// libselinux log messages usually contain a new line character, while
// Android LOG() does not expect it. Remove it to avoid empty lines in
// the log buffers.
size_t str_len = strlen(buf);
if (buf[str_len - 1] == '\n') {
buf[str_len - 1] = '\0';
}
if (type == SELINUX_AVC) {
SelinuxAvcLog(buf);
} else {
android::base::KernelLogger(android::base::MAIN, severity, "selinux", nullptr, 0, buf);
}
return 0;
}
void SelinuxSetupKernelLogging() {
selinux_callback cb;
cb.func_log = SelinuxKlogCallback;
selinux_set_callback(SELINUX_CB_LOG, cb);
}
int SelinuxGetVendorAndroidVersion() {
if (IsMicrodroid()) {
// As of now Microdroid doesn't have any vendor code.
return __ANDROID_API_FUTURE__;
}
static int vendor_android_version = [] {
if (!IsSplitPolicyDevice()) {
// If this device does not split sepolicy files, it's not a Treble device and therefore,
// we assume it's always on the latest platform.
return __ANDROID_API_FUTURE__;
}
std::string version;
if (!GetVendorMappingVersion(&version)) {
LOG(FATAL) << "Could not read vendor SELinux version";
}
int major_version;
std::string major_version_str(version, 0, version.find('.'));
if (!ParseInt(major_version_str, &major_version)) {
PLOG(FATAL) << "Failed to parse the vendor sepolicy major version "
<< major_version_str;
}
return major_version;
}();
return vendor_android_version;
}
// This is for R system.img/system_ext.img to work on old vendor.img as system_ext.img
// is introduced in R. We mount system_ext in second stage init because the first-stage
// init in boot.img won't be updated in the system-only OTA scenario.
void MountMissingSystemPartitions() {
android::fs_mgr::Fstab fstab;
if (!ReadDefaultFstab(&fstab)) {
LOG(ERROR) << "Could not read default fstab";
}
android::fs_mgr::Fstab mounts;
if (!ReadFstabFromFile("/proc/mounts", &mounts)) {
LOG(ERROR) << "Could not read /proc/mounts";
}
static const std::vector<std::string> kPartitionNames = {"system_ext", "product"};
android::fs_mgr::Fstab extra_fstab;
for (const auto& name : kPartitionNames) {
if (GetEntryForMountPoint(&mounts, "/"s + name)) {
// The partition is already mounted.
continue;
}
auto system_entries = GetEntriesForMountPoint(&fstab, "/system");
for (auto& system_entry : system_entries) {
if (!system_entry) {
LOG(ERROR) << "Could not find mount entry for /system";
break;
}
if (!system_entry->fs_mgr_flags.logical) {
LOG(INFO) << "Skipping mount of " << name << ", system is not dynamic.";
break;
}
auto entry = *system_entry;
auto partition_name = name + fs_mgr_get_slot_suffix();
auto replace_name = "system"s + fs_mgr_get_slot_suffix();
entry.mount_point = "/"s + name;
entry.blk_device =
android::base::StringReplace(entry.blk_device, replace_name, partition_name, false);
if (!fs_mgr_update_logical_partition(&entry)) {
LOG(ERROR) << "Could not update logical partition";
continue;
}
extra_fstab.emplace_back(std::move(entry));
}
}
SkipMountingPartitions(&extra_fstab, true /* verbose */);
if (extra_fstab.empty()) {
return;
}
BlockDevInitializer block_dev_init;
for (auto& entry : extra_fstab) {
if (access(entry.blk_device.c_str(), F_OK) != 0) {
auto block_dev = android::base::Basename(entry.blk_device);
if (!block_dev_init.InitDmDevice(block_dev)) {
LOG(ERROR) << "Failed to find device-mapper node: " << block_dev;
continue;
}
}
if (fs_mgr_do_mount_one(entry)) {
LOG(ERROR) << "Could not mount " << entry.mount_point;
}
}
}
static void LoadSelinuxPolicy(std::string& policy) {
LOG(INFO) << "Loading SELinux policy";
set_selinuxmnt("/sys/fs/selinux");
if (security_load_policy(policy.data(), policy.size()) < 0) {
PLOG(FATAL) << "SELinux: Could not load policy";
}
}
// Encapsulates steps to load SELinux policy in Microdroid.
// So far the process is very straightforward - just load the precompiled policy from /system.
void LoadSelinuxPolicyMicrodroid() {
constexpr const char kMicrodroidPrecompiledSepolicy[] =
"/system/etc/selinux/microdroid_precompiled_sepolicy";
LOG(INFO) << "Opening SELinux policy from " << kMicrodroidPrecompiledSepolicy;
unique_fd policy_fd(open(kMicrodroidPrecompiledSepolicy, O_RDONLY | O_CLOEXEC | O_NOFOLLOW));
if (policy_fd < 0) {
PLOG(FATAL) << "Failed to open " << kMicrodroidPrecompiledSepolicy;
}
std::string policy;
if (!android::base::ReadFdToString(policy_fd, &policy)) {
PLOG(FATAL) << "Failed to read policy file: " << kMicrodroidPrecompiledSepolicy;
}
LoadSelinuxPolicy(policy);
}
// The SELinux setup process is carefully orchestrated around snapuserd. Policy
// must be loaded off dynamic partitions, and during an OTA, those partitions
// cannot be read without snapuserd. But, with kernel-privileged snapuserd
// running, loading the policy will immediately trigger audits.
//
// We use a five-step process to address this:
// (1) Read the policy into a string, with snapuserd running.
// (2) Rewrite the snapshot device-mapper tables, to generate new dm-user
// devices and to flush I/O.
// (3) Kill snapuserd, which no longer has any dm-user devices to attach to.
// (4) Load the sepolicy and issue critical restorecons in /dev, carefully
// avoiding anything that would read from /system.
// (5) Re-launch snapuserd and attach it to the dm-user devices from step (2).
//
// After this sequence, it is safe to enable enforcing mode and continue booting.
void LoadSelinuxPolicyAndroid() {
MountMissingSystemPartitions();
LOG(INFO) << "Opening SELinux policy";
// Read the policy before potentially killing snapuserd.
std::string policy;
ReadPolicy(&policy);
auto snapuserd_helper = SnapuserdSelinuxHelper::CreateIfNeeded();
if (snapuserd_helper) {
// Kill the old snapused to avoid audit messages. After this we cannot read from /system
// (or other dynamic partitions) until we call FinishTransition().
snapuserd_helper->StartTransition();
}
LoadSelinuxPolicy(policy);
if (snapuserd_helper) {
// Before enforcing, finish the pending snapuserd transition.
snapuserd_helper->FinishTransition();
snapuserd_helper = nullptr;
}
}
int SetupSelinux(char** argv) {
SetStdioToDevNull(argv);
InitKernelLogging(argv);
if (REBOOT_BOOTLOADER_ON_PANIC) {
InstallRebootSignalHandlers();
}
boot_clock::time_point start_time = boot_clock::now();
SelinuxSetupKernelLogging();
// TODO(b/287206497): refactor into different headers to only include what we need.
if (IsMicrodroid()) {
LoadSelinuxPolicyMicrodroid();
} else {
LoadSelinuxPolicyAndroid();
}
SelinuxSetEnforcement();
// We're in the kernel domain and want to transition to the init domain. File systems that
// store SELabels in their xattrs, such as ext4 do not need an explicit restorecon here,
// but other file systems do. In particular, this is needed for ramdisks such as the
// recovery image for A/B devices.
if (selinux_android_restorecon("/system/bin/init", 0) == -1) {
PLOG(FATAL) << "restorecon failed of /system/bin/init failed";
}
setenv(kEnvSelinuxStartedAt, std::to_string(start_time.time_since_epoch().count()).c_str(), 1);
const char* path = "/system/bin/init";
const char* args[] = {path, "second_stage", nullptr};
execv(path, const_cast<char**>(args));
// execv() only returns if an error happened, in which case we
// panic and never return from this function.
PLOG(FATAL) << "execv(\"" << path << "\") failed";
return 1;
}
} // namespace init
} // namespace android
|