1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Unicode_test"
#include <sys/mman.h>
#include <unistd.h>
#include <log/log.h>
#include <utils/Unicode.h>
#include <gtest/gtest.h>
namespace android {
class UnicodeTest : public testing::Test {
protected:
virtual void SetUp() {
}
virtual void TearDown() {
}
char16_t const * const kSearchString = u"I am a leaf on the wind.";
constexpr static size_t BUFSIZE = 64; // large enough for all tests
void TestUTF8toUTF16(std::initializer_list<uint8_t> input,
std::initializer_list<char16_t> expect,
const char* err_msg_length = "",
ssize_t expected_length = 0) {
uint8_t empty_str[] = {};
char16_t output[BUFSIZE];
const size_t inlen = input.size(), outlen = expect.size();
ASSERT_LT(outlen, BUFSIZE);
const uint8_t *input_data = inlen ? std::data(input) : empty_str;
ssize_t measured = utf8_to_utf16_length(input_data, inlen);
EXPECT_EQ(expected_length ? : (ssize_t)outlen, measured) << err_msg_length;
utf8_to_utf16(input_data, inlen, output, outlen + 1);
for (size_t i = 0; i < outlen; i++) {
EXPECT_EQ(std::data(expect)[i], output[i]);
}
EXPECT_EQ(0, output[outlen]) << "should be null terminated";
}
void TestUTF16toUTF8(std::initializer_list<char16_t> input,
std::initializer_list<char> expect,
const char* err_msg_length = "",
ssize_t expected_length = 0) {
char16_t empty_str[] = {};
char output[BUFSIZE];
const size_t inlen = input.size(), outlen = expect.size();
ASSERT_LT(outlen, BUFSIZE);
const char16_t *input_data = inlen ? std::data(input) : empty_str;
ssize_t measured = utf16_to_utf8_length(input_data, inlen);
EXPECT_EQ(expected_length ? : (ssize_t)outlen, measured) << err_msg_length;
utf16_to_utf8(input_data, inlen, output, outlen + 1);
for (size_t i = 0; i < outlen; i++) {
EXPECT_EQ(std::data(expect)[i], output[i]);
}
EXPECT_EQ(0, output[outlen]) << "should be null terminated";
}
};
TEST_F(UnicodeTest, UTF8toUTF16ZeroLength) {
TestUTF8toUTF16({}, {},
"Zero length input should return zero length output.");
}
TEST_F(UnicodeTest, UTF8toUTF16ASCII) {
TestUTF8toUTF16(
{ 0x30 }, // U+0030 or ASCII '0'
{ 0x0030 },
"ASCII codepoints should have a length of 1 char16_t");
}
TEST_F(UnicodeTest, UTF8toUTF16Plane1) {
TestUTF8toUTF16(
{ 0xE2, 0x8C, 0xA3 }, // U+2323 SMILE
{ 0x2323 },
"Plane 1 codepoints should have a length of 1 char16_t");
}
TEST_F(UnicodeTest, UTF8toUTF16Surrogate) {
TestUTF8toUTF16(
{ 0xF0, 0x90, 0x80, 0x80 }, // U+10000
{ 0xD800, 0xDC00 },
"Surrogate pairs should have a length of 2 char16_t");
}
TEST_F(UnicodeTest, UTF8toUTF16TruncatedUTF8) {
TestUTF8toUTF16(
{ 0xE2, 0x8C }, // Truncated U+2323 SMILE
{ }, // Conversion should still work but produce nothing
"Truncated UTF-8 should return -1 to indicate invalid",
-1);
}
TEST_F(UnicodeTest, UTF8toUTF16Normal) {
TestUTF8toUTF16({
0x30, // U+0030, 1 UTF-16 character
0xC4, 0x80, // U+0100, 1 UTF-16 character
0xE2, 0x8C, 0xA3, // U+2323, 1 UTF-16 character
0xF0, 0x90, 0x80, 0x80, // U+10000, 2 UTF-16 character
}, {
0x0030,
0x0100,
0x2323,
0xD800, 0xDC00
});
}
TEST_F(UnicodeTest, UTF8toUTF16Invalid) {
// TODO: The current behavior of utf8_to_utf16 is to treat invalid
// leading byte (>= 0xf8) as a 4-byte UTF8 sequence, and to treat
// invalid trailing byte(s) (i.e. bytes not having MSB set) as if
// they are valid and do the normal conversion. However, a better
// handling would be to treat invalid sequences as errors, such
// cases need to be reported and invalid characters (e.g. U+FFFD)
// could be produced at the place of error. Until a fix is ready
// and compatibility is not an issue, we will keep testing the
// current behavior
TestUTF8toUTF16({
0xf8, // invalid leading byte
0xc4, 0x00, // U+0100 with invalid trailing byte
0xe2, 0x0c, 0xa3, // U+2323 with invalid trailing bytes
0xf0, 0x10, 0x00, 0x00, // U+10000 with invalid trailing bytes
}, {
0x4022, // invalid leading byte (>=0xfc) is treated
// as valid for 4-byte UTF8 sequence
0x000C,
0x00A3, // invalid leadnig byte (b'10xxxxxx) is
// treated as valid single UTF-8 byte
0xD800, // invalid trailing bytes are treated
0xDC00, // as valid bytes and follow normal
});
}
TEST_F(UnicodeTest, UTF16toUTF8ZeroLength) {
// TODO: The current behavior of utf16_to_utf8_length() is that
// it returns -1 if the input is a zero length UTF16 string.
// This is inconsistent with utf8_to_utf16_length() where a zero
// length string returns 0. However, to fix the current behavior,
// we could have compatibility issue. Until then, we will keep
// testing the current behavior
TestUTF16toUTF8({}, {},
"Zero length UTF16 input should return length of -1.", -1);
}
TEST_F(UnicodeTest, UTF16toUTF8ASCII) {
TestUTF16toUTF8(
{ 0x0030 }, // U+0030 or ASCII '0'
{ '\x30' },
"ASCII codepoints in UTF16 should give a length of 1 in UTF8");
}
TEST_F(UnicodeTest, UTF16toUTF8Plane1) {
TestUTF16toUTF8(
{ 0x2323 }, // U+2323 SMILE
{ '\xE2', '\x8C', '\xA3' },
"Plane 1 codepoints should have a length of 3 char in UTF-8");
}
TEST_F(UnicodeTest, UTF16toUTF8Surrogate) {
TestUTF16toUTF8(
{ 0xD800, 0xDC00 }, // U+10000
{ '\xF0', '\x90', '\x80', '\x80' },
"Surrogate pairs should have a length of 4 chars");
}
TEST_F(UnicodeTest, UTF16toUTF8UnpairedSurrogate) {
TestUTF16toUTF8(
{ 0xD800 }, // U+10000 with high surrogate pair only
{ }, // Unpaired surrogate should be ignored
"A single unpaired high surrogate should have a length of 0 chars");
TestUTF16toUTF8(
{ 0xDC00 }, // U+10000 with low surrogate pair only
{ }, // Unpaired surrogate should be ignored
"A single unpaired low surrogate should have a length of 0 chars");
TestUTF16toUTF8(
// U+0030, U+0100, U+10000 with high surrogate pair only, U+2323
{ 0x0030, 0x0100, 0xDC00, 0x2323 },
{ '\x30', '\xC4', '\x80', '\xE2', '\x8C', '\xA3' },
"Unpaired high surrogate should be skipped in the middle");
TestUTF16toUTF8(
// U+0030, U+0100, U+10000 with high surrogate pair only, U+2323
{ 0x0030, 0x0100, 0xDC00, 0x2323 },
{ '\x30', '\xC4', '\x80', '\xE2', '\x8C', '\xA3' },
"Unpaired low surrogate should be skipped in the middle");
}
TEST_F(UnicodeTest, UTF16toUTF8CorrectInvalidSurrogate) {
// http://b/29250543
// d841d8 is an invalid start for a surrogate pair. Make sure this is handled by ignoring the
// first character in the pair and handling the rest correctly.
TestUTF16toUTF8(
{ 0xD841, 0xD841, 0xDC41 }, // U+20441
{ '\xF0', '\xA0', '\x91', '\x81' },
"Invalid start for a surrogate pair should be ignored");
}
TEST_F(UnicodeTest, UTF16toUTF8Normal) {
TestUTF16toUTF8({
0x0024, // U+0024 ($) --> 0x24, 1 UTF-8 byte
0x00A3, // U+00A3 (£) --> 0xC2 0xA3, 2 UTF-8 bytes
0x0939, // U+0939 (ह) --> 0xE0 0xA4 0xB9, 3 UTF-8 bytes
0x20AC, // U+20AC (€) --> 0xE2 0x82 0xAC, 3 UTF-8 bytes
0xD55C, // U+D55C (한)--> 0xED 0x95 0x9C, 3 UTF-8 bytes
0xD801, 0xDC37, // U+10437 (𐐷) --> 0xF0 0x90 0x90 0xB7, 4 UTF-8 bytes
}, {
'\x24',
'\xC2', '\xA3',
'\xE0', '\xA4', '\xB9',
'\xE2', '\x82', '\xAC',
'\xED', '\x95', '\x9C',
'\xF0', '\x90', '\x90', '\xB7',
});
}
TEST_F(UnicodeTest, strstr16EmptyTarget) {
EXPECT_EQ(strstr16(kSearchString, u""), kSearchString)
<< "should return the original pointer";
}
TEST_F(UnicodeTest, strstr16EmptyTarget_bug) {
// In the original code when target is an empty string strlen16() would
// start reading the memory until a "terminating null" (that is, zero)
// character is found. This happens because "*target++" in the original
// code would increment the pointer beyond the actual string.
void* memptr;
const size_t alignment = sysconf(_SC_PAGESIZE);
const size_t size = 2 * alignment;
ASSERT_EQ(posix_memalign(&memptr, alignment, size), 0);
// Fill allocated memory.
memset(memptr, 'A', size);
// Create a pointer to an "empty" string on the first page.
char16_t* const emptyString = (char16_t* const)((char*)memptr + alignment - 4);
*emptyString = (char16_t)0;
// Protect the second page to show that strstr16() violates that.
ASSERT_EQ(mprotect((char*)memptr + alignment, alignment, PROT_NONE), 0);
// Test strstr16(): when bug is present a segmentation fault is raised.
ASSERT_EQ(strstr16((char16_t*)memptr, emptyString), (char16_t*)memptr)
<< "should not read beyond the first char16_t.";
// Reset protection of the second page
ASSERT_EQ(mprotect((char*)memptr + alignment, alignment, PROT_READ | PROT_WRITE), 0);
// Free allocated memory.
free(memptr);
}
TEST_F(UnicodeTest, strstr16SameString) {
const char16_t* result = strstr16(kSearchString, kSearchString);
EXPECT_EQ(kSearchString, result)
<< "should return the original pointer";
}
TEST_F(UnicodeTest, strstr16TargetStartOfString) {
const char16_t* result = strstr16(kSearchString, u"I am");
EXPECT_EQ(kSearchString, result)
<< "should return the original pointer";
}
TEST_F(UnicodeTest, strstr16TargetEndOfString) {
const char16_t* result = strstr16(kSearchString, u"wind.");
EXPECT_EQ(kSearchString+19, result);
}
TEST_F(UnicodeTest, strstr16TargetWithinString) {
const char16_t* result = strstr16(kSearchString, u"leaf");
EXPECT_EQ(kSearchString+7, result);
}
TEST_F(UnicodeTest, strstr16TargetNotPresent) {
const char16_t* result = strstr16(kSearchString, u"soar");
EXPECT_EQ(nullptr, result);
}
// http://b/29267949
// Test that overreading in utf8_to_utf16_length is detected
TEST_F(UnicodeTest, InvalidUtf8OverreadDetected) {
// An utf8 char starting with \xc4 is two bytes long.
// Add extra zeros so no extra memory is read in case the code doesn't
// work as expected.
static char utf8[] = "\xc4\x00\x00\x00";
ASSERT_DEATH(utf8_to_utf16_length((uint8_t *) utf8, strlen(utf8),
true /* overreadIsFatal */), "" /* regex for ASSERT_DEATH */);
}
}
|