1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "storaged"
#include <stdint.h>
#include <stdlib.h>
#include <sstream>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <log/log_event_list.h>
#include "storaged.h"
#include "storaged_diskstats.h"
namespace {
using aidl::android::hardware::health::DiskStats;
using aidl::android::hardware::health::IHealth;
#ifdef DEBUG
void log_debug_disk_perf(struct disk_perf* perf, const char* type) {
// skip if the input structure are all zeros
if (perf == NULL || perf->is_zero()) return;
LOG(INFO) << "disk_perf " << type << " rd: " << perf->read_perf << " kbps, " << perf->read_ios
<< " iops"
<< " wr: " << perf->write_perf << " kbps, " << perf->write_ios << " iops"
<< " q: " << perf->queue;
}
#else
void log_debug_disk_perf(struct disk_perf* perf, const char* type) {}
#endif
void log_event_disk_stats(struct disk_stats* stats, const char* type) {
// skip if the input structure are all zeros
if (stats == NULL || stats->is_zero()) return;
android_log_event_list(EVENTLOGTAG_DISKSTATS)
<< type << stats->start_time << stats->end_time
<< stats->read_ios << stats->read_merges
<< stats->read_sectors << stats->read_ticks
<< stats->write_ios << stats->write_merges
<< stats->write_sectors << stats->write_ticks
<< (uint64_t)stats->io_avg << stats->io_ticks << stats->io_in_queue
<< LOG_ID_EVENTS;
}
} // namespace
bool get_time(struct timespec* ts) {
// Use monotonic to exclude suspend time so that we measure IO bytes/sec
// when system is running.
int ret = clock_gettime(CLOCK_MONOTONIC, ts);
if (ret < 0) {
PLOG(ERROR) << "clock_gettime() failed";
return false;
}
return true;
}
void init_disk_stats_other(const struct timespec& ts, struct disk_stats* stats) {
stats->start_time = 0;
stats->end_time = (uint64_t)ts.tv_sec * SEC_TO_MSEC + ts.tv_nsec / (MSEC_TO_USEC * USEC_TO_NSEC);
stats->counter = 1;
stats->io_avg = (double)stats->io_in_flight;
}
bool parse_disk_stats(const char* disk_stats_path, struct disk_stats* stats) {
// Get time
struct timespec ts;
if (!get_time(&ts)) {
return false;
}
std::string buffer;
if (!android::base::ReadFileToString(disk_stats_path, &buffer)) {
PLOG(ERROR) << disk_stats_path << ": ReadFileToString failed.";
return false;
}
// Regular diskstats entries
std::stringstream ss(buffer);
for (uint i = 0; i < DISK_STATS_SIZE; ++i) {
ss >> *((uint64_t*)stats + i);
}
// Other entries
init_disk_stats_other(ts, stats);
return true;
}
void convert_hal_disk_stats(struct disk_stats* dst, const DiskStats& src) {
dst->read_ios = src.reads;
dst->read_merges = src.readMerges;
dst->read_sectors = src.readSectors;
dst->read_ticks = src.readTicks;
dst->write_ios = src.writes;
dst->write_merges = src.writeMerges;
dst->write_sectors = src.writeSectors;
dst->write_ticks = src.writeTicks;
dst->io_in_flight = src.ioInFlight;
dst->io_ticks = src.ioTicks;
dst->io_in_queue = src.ioInQueue;
}
bool get_disk_stats_from_health_hal(const std::shared_ptr<IHealth>& service,
struct disk_stats* stats) {
struct timespec ts;
if (!get_time(&ts)) {
return false;
}
std::vector<DiskStats> halStats;
auto ret = service->getDiskStats(&halStats);
if (ret.isOk()) {
if (halStats.size() > 0) {
convert_hal_disk_stats(stats, halStats[0]);
init_disk_stats_other(ts, stats);
return true;
}
LOG(ERROR) << "getDiskStats succeeded but size is 0";
return false;
}
if (ret.getExceptionCode() == EX_UNSUPPORTED_OPERATION) {
LOG(DEBUG) << "getDiskStats is not supported on health HAL.";
return false;
}
LOG(ERROR) << "getDiskStats failed with " << ret.getDescription();
return false;
}
struct disk_perf get_disk_perf(struct disk_stats* stats)
{
struct disk_perf perf = {};
if (stats->io_ticks) {
if (stats->read_ticks) {
unsigned long long divisor = stats->read_ticks * stats->io_ticks;
perf.read_perf = ((unsigned long long)SECTOR_SIZE *
stats->read_sectors * stats->io_in_queue +
(divisor >> 1)) / divisor;
perf.read_ios = ((unsigned long long)SEC_TO_MSEC *
stats->read_ios * stats->io_in_queue +
(divisor >> 1)) / divisor;
}
if (stats->write_ticks) {
unsigned long long divisor = stats->write_ticks * stats->io_ticks;
perf.write_perf = ((unsigned long long)SECTOR_SIZE *
stats->write_sectors * stats->io_in_queue +
(divisor >> 1)) / divisor;
perf.write_ios = ((unsigned long long)SEC_TO_MSEC *
stats->write_ios * stats->io_in_queue +
(divisor >> 1)) / divisor;
}
perf.queue = (stats->io_in_queue + (stats->io_ticks >> 1)) /
stats->io_ticks;
}
return perf;
}
void get_inc_disk_stats(const struct disk_stats* prev, const struct disk_stats* curr,
struct disk_stats* inc)
{
*inc = *curr - *prev;
inc->start_time = prev->end_time;
inc->end_time = curr->end_time;
inc->io_avg = curr->io_avg;
inc->counter = 1;
}
// Add src to dst
void add_disk_stats(struct disk_stats* src, struct disk_stats* dst)
{
if (dst->end_time != 0 && dst->end_time != src->start_time) {
LOG(WARNING) << "Two dis-continuous periods of diskstats"
<< " are added. dst end with " << dst->end_time << ", src start with "
<< src->start_time;
}
*dst += *src;
dst->io_in_flight = src->io_in_flight;
if (dst->counter + src->counter) {
dst->io_avg =
((dst->io_avg * dst->counter) + (src->io_avg * src->counter)) /
(dst->counter + src->counter);
}
dst->counter += src->counter;
dst->end_time = src->end_time;
if (dst->start_time == 0) {
dst->start_time = src->start_time;
}
}
/* disk_stats_monitor */
void disk_stats_monitor::update_mean()
{
CHECK(mValid);
mMean.read_perf = (uint32_t)mStats.read_perf.get_mean();
mMean.read_ios = (uint32_t)mStats.read_ios.get_mean();
mMean.write_perf = (uint32_t)mStats.write_perf.get_mean();
mMean.write_ios = (uint32_t)mStats.write_ios.get_mean();
mMean.queue = (uint32_t)mStats.queue.get_mean();
}
void disk_stats_monitor::update_std()
{
CHECK(mValid);
mStd.read_perf = (uint32_t)mStats.read_perf.get_std();
mStd.read_ios = (uint32_t)mStats.read_ios.get_std();
mStd.write_perf = (uint32_t)mStats.write_perf.get_std();
mStd.write_ios = (uint32_t)mStats.write_ios.get_std();
mStd.queue = (uint32_t)mStats.queue.get_std();
}
void disk_stats_monitor::add(struct disk_perf* perf)
{
mStats.read_perf.add(perf->read_perf);
mStats.read_ios.add(perf->read_ios);
mStats.write_perf.add(perf->write_perf);
mStats.write_ios.add(perf->write_ios);
mStats.queue.add(perf->queue);
}
void disk_stats_monitor::evict(struct disk_perf* perf) {
mStats.read_perf.evict(perf->read_perf);
mStats.read_ios.evict(perf->read_ios);
mStats.write_perf.evict(perf->write_perf);
mStats.write_ios.evict(perf->write_ios);
mStats.queue.evict(perf->queue);
}
bool disk_stats_monitor::detect(struct disk_perf* perf)
{
return ((double)perf->queue >= (double)mMean.queue + mSigma * (double)mStd.queue) &&
((double)perf->read_perf < (double)mMean.read_perf - mSigma * (double)mStd.read_perf) &&
((double)perf->write_perf < (double)mMean.write_perf - mSigma * (double)mStd.write_perf);
}
void disk_stats_monitor::update(struct disk_stats* curr)
{
disk_stats inc;
get_inc_disk_stats(&mPrevious, curr, &inc);
add_disk_stats(&inc, &mAccumulate_pub);
struct disk_perf perf = get_disk_perf(&inc);
log_debug_disk_perf(&perf, "regular");
add(&perf);
mBuffer.push(perf);
if (mBuffer.size() > mWindow) {
evict(&mBuffer.front());
mBuffer.pop();
mValid = true;
}
// Update internal data structures
if (LIKELY(mValid)) {
CHECK_EQ(mBuffer.size(), mWindow);
update_mean();
update_std();
if (UNLIKELY(detect(&perf))) {
mStall = true;
add_disk_stats(&inc, &mAccumulate);
log_debug_disk_perf(&mMean, "stalled_mean");
log_debug_disk_perf(&mStd, "stalled_std");
} else {
if (mStall) {
struct disk_perf acc_perf = get_disk_perf(&mAccumulate);
log_debug_disk_perf(&acc_perf, "stalled");
log_event_disk_stats(&mAccumulate, "stalled");
mStall = false;
memset(&mAccumulate, 0, sizeof(mAccumulate));
}
}
}
mPrevious = *curr;
}
void disk_stats_monitor::update() {
disk_stats curr;
if (mHealth != nullptr) {
if (!get_disk_stats_from_health_hal(mHealth, &curr)) {
return;
}
} else {
if (!parse_disk_stats(DISK_STATS_PATH, &curr)) {
return;
}
}
update(&curr);
}
void disk_stats_monitor::publish(void)
{
struct disk_perf perf = get_disk_perf(&mAccumulate_pub);
log_debug_disk_perf(&perf, "regular");
log_event_disk_stats(&mAccumulate_pub, "regular");
// Reset global structures
memset(&mAccumulate_pub, 0, sizeof(struct disk_stats));
}
|