1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "avb_utils.h"
#include <android-base/strings.h>
#include <libavb/libavb.h>
#include "fec_private.h"
int parse_vbmeta_from_footer(fec_handle *f, std::vector<uint8_t> *vbmeta) {
if (f->size <= AVB_FOOTER_SIZE) {
debug("file size not large enough to be avb images:" PRIu64, f->size);
return -1;
}
AvbFooter footer_read;
if (!raw_pread(f->fd, &footer_read, AVB_FOOTER_SIZE,
f->size - AVB_FOOTER_SIZE)) {
error("failed to read footer: %s", strerror(errno));
return -1;
}
AvbFooter footer;
if (!avb_footer_validate_and_byteswap(&footer_read, &footer)) {
debug("invalid avb footer");
return -1;
}
uint64_t vbmeta_offset = footer.vbmeta_offset;
uint64_t vbmeta_size = footer.vbmeta_size;
check(vbmeta_offset <= f->size - sizeof(footer) - vbmeta_size);
std::vector<uint8_t> vbmeta_data(vbmeta_size, 0);
// TODO(xunchang) handle the sparse image with libsparse.
if (!raw_pread(f->fd, vbmeta_data.data(), vbmeta_data.size(),
vbmeta_offset)) {
error("failed to read avb vbmeta: %s", strerror(errno));
return -1;
}
if (auto status = avb_vbmeta_image_verify(
vbmeta_data.data(), vbmeta_data.size(), nullptr, nullptr);
status != AVB_VBMETA_VERIFY_RESULT_OK &&
status != AVB_VBMETA_VERIFY_RESULT_OK_NOT_SIGNED) {
error("failed to verify avb vbmeta, status: %d", status);
return -1;
}
*vbmeta = std::move(vbmeta_data);
return 0;
}
int parse_avb_image(fec_handle *f, const std::vector<uint8_t> &vbmeta) {
// TODO(xunchang) check if avb verification or hashtree is disabled.
// Look for the hashtree descriptor, we expect exactly one descriptor in
// vbmeta.
// TODO(xunchang) handle the image with AvbHashDescriptor.
auto parse_descriptor = [](const AvbDescriptor *descriptor,
void *user_data) {
if (descriptor &&
avb_be64toh(descriptor->tag) == AVB_DESCRIPTOR_TAG_HASHTREE) {
auto desp = static_cast<const AvbDescriptor **>(user_data);
*desp = descriptor;
return false;
}
return true;
};
const AvbHashtreeDescriptor *hashtree_descriptor_ptr = nullptr;
avb_descriptor_foreach(vbmeta.data(), vbmeta.size(), parse_descriptor,
&hashtree_descriptor_ptr);
if (!hashtree_descriptor_ptr) {
error("failed to find avb hashtree descriptor");
return -1;
}
AvbHashtreeDescriptor hashtree_descriptor;
if (!avb_hashtree_descriptor_validate_and_byteswap(hashtree_descriptor_ptr,
&hashtree_descriptor)) {
error("failed to verify avb hashtree descriptor");
return -1;
}
// The partition name, salt, root append right after the hashtree
// descriptor.
auto read_ptr = reinterpret_cast<const uint8_t *>(hashtree_descriptor_ptr);
// Calculate the offset with respect to the vbmeta; and check both the
// salt & root are within the range.
uint32_t salt_offset =
sizeof(AvbHashtreeDescriptor) + hashtree_descriptor.partition_name_len;
uint32_t root_offset = salt_offset + hashtree_descriptor.salt_len;
check(hashtree_descriptor.salt_len < vbmeta.size());
check(salt_offset < vbmeta.size() - hashtree_descriptor.salt_len);
check(hashtree_descriptor.root_digest_len < vbmeta.size());
check(root_offset < vbmeta.size() - hashtree_descriptor.root_digest_len);
std::vector<uint8_t> salt(
read_ptr + salt_offset,
read_ptr + salt_offset + hashtree_descriptor.salt_len);
std::vector<uint8_t> root_hash(
read_ptr + root_offset,
read_ptr + root_offset + hashtree_descriptor.root_digest_len);
// Expect the AVB image has the format:
// 1. hashtree
// 2. ecc data
// 3. vbmeta
// 4. avb footer
check(hashtree_descriptor.fec_offset ==
hashtree_descriptor.tree_offset + hashtree_descriptor.tree_size);
check(hashtree_descriptor.fec_offset <=
f->size - hashtree_descriptor.fec_size);
f->data_size = hashtree_descriptor.fec_offset;
f->ecc.blocks = fec_div_round_up(f->data_size, FEC_BLOCKSIZE);
f->ecc.rounds = fec_div_round_up(f->ecc.blocks, f->ecc.rsn);
f->ecc.size = hashtree_descriptor.fec_size;
f->ecc.start = hashtree_descriptor.fec_offset;
// TODO(xunchang) verify the integrity of the ecc data.
f->ecc.valid = true;
std::string hash_algorithm =
reinterpret_cast<char *>(hashtree_descriptor.hash_algorithm);
int nid = -1;
if (android::base::EqualsIgnoreCase(hash_algorithm, "sha1")) {
nid = NID_sha1;
} else if (android::base::EqualsIgnoreCase(hash_algorithm, "sha256")) {
nid = NID_sha256;
} else {
error("unsupported hash algorithm %s", hash_algorithm.c_str());
}
hashtree_info hashtree;
hashtree.initialize(hashtree_descriptor.tree_offset,
hashtree_descriptor.tree_offset / FEC_BLOCKSIZE, salt,
nid);
if (hashtree.verify_tree(f, root_hash.data()) != 0) {
error("failed to verify hashtree");
return -1;
}
// We have validate the hashtree,
f->data_size = hashtree.hash_start;
f->avb = {
.valid = true,
.vbmeta = vbmeta,
.hashtree = std::move(hashtree),
};
return 0;
}
|