1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SerializedFlushToState.h"
#include <map>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <gtest/gtest.h>
using android::base::Join;
using android::base::StringPrintf;
constexpr size_t kChunkSize = 3 * 4096;
class SerializedFlushToStateTest : public testing::Test {
protected:
void SetUp() override {
// This test spams many unneeded INFO logs, so we suppress them.
old_log_severity_ = android::base::SetMinimumLogSeverity(android::base::WARNING);
}
void TearDown() override { android::base::SetMinimumLogSeverity(old_log_severity_); }
std::string TestReport(const std::vector<uint64_t>& expected, const std::vector<uint64_t>& read)
REQUIRES(logd_lock) {
auto sequence_to_log_id = [&](uint64_t sequence) -> int {
for (const auto& [log_id, sequences] : sequence_numbers_per_buffer_) {
if (std::find(sequences.begin(), sequences.end(), sequence) != sequences.end()) {
return log_id;
}
}
return -1;
};
std::map<int, std::vector<uint64_t>> missing_sequences;
std::vector<uint64_t> missing_expected;
std::set_difference(expected.begin(), expected.end(), read.begin(), read.end(),
std::back_inserter(missing_expected));
for (uint64_t sequence : missing_expected) {
int log_id = sequence_to_log_id(sequence);
missing_sequences[log_id].emplace_back(sequence);
}
std::map<int, std::vector<uint64_t>> extra_sequences;
std::vector<uint64_t> extra_read;
std::set_difference(read.begin(), read.end(), expected.begin(), expected.end(),
std::back_inserter(extra_read));
for (uint64_t sequence : extra_read) {
int log_id = sequence_to_log_id(sequence);
extra_sequences[log_id].emplace_back(sequence);
}
std::vector<std::string> errors;
for (const auto& [log_id, sequences] : missing_sequences) {
errors.emplace_back(
StringPrintf("Log id %d missing %zu sequences", log_id, sequences.size()));
}
for (const auto& [log_id, sequences] : extra_sequences) {
errors.emplace_back(
StringPrintf("Log id %d has extra %zu sequences", log_id, sequences.size()));
}
return Join(errors, ", ");
}
// Read sequence numbers in order from SerializedFlushToState for every mask combination and all
// sequence numbers from 0 through the highest logged sequence number + 1.
// This assumes that all of the logs have already been written.
void TestAllReading() REQUIRES(logd_lock) {
uint64_t max_sequence = sequence_ + 1;
uint32_t max_mask = (1 << LOG_ID_MAX) - 1;
for (uint64_t sequence = 0; sequence < max_sequence; ++sequence) {
for (uint32_t mask = 0; mask < max_mask; ++mask) {
auto state = SerializedFlushToState{sequence, mask, log_chunks_};
TestReading(sequence, mask, state);
}
}
}
// Similar to TestAllReading() except that it doesn't assume any logs are in the buffer, instead
// it calls write_logs() in a loop for sequence/mask combination. It clears log_chunks_ and
// sequence_numbers_per_buffer_ between calls, such that only the sequence numbers written in
// the previous call to write_logs() are expected.
void TestAllReadingWithFutureMessages(const std::function<bool(int)>& write_logs)
REQUIRES(logd_lock) {
uint64_t max_sequence = sequence_ + 1;
uint32_t max_mask = (1 << LOG_ID_MAX) - 1;
for (uint64_t sequence = 1; sequence < max_sequence; ++sequence) {
for (uint32_t mask = 1; mask < max_mask; ++mask) {
log_id_for_each(i) { log_chunks_[i].clear(); }
auto state = SerializedFlushToState{sequence, mask, log_chunks_};
int loop_count = 0;
while (write_logs(loop_count++)) {
TestReading(sequence, mask, state);
sequence_numbers_per_buffer_.clear();
}
}
}
}
void TestReading(uint64_t start, LogMask log_mask, SerializedFlushToState& state)
REQUIRES(logd_lock) {
std::vector<uint64_t> expected_sequence;
log_id_for_each(i) {
if (((1 << i) & log_mask) == 0) {
continue;
}
for (const auto& sequence : sequence_numbers_per_buffer_[i]) {
if (sequence >= start) {
expected_sequence.emplace_back(sequence);
}
}
}
std::sort(expected_sequence.begin(), expected_sequence.end());
std::vector<uint64_t> read_sequence;
while (state.HasUnreadLogs()) {
auto top = state.PopNextUnreadLog();
read_sequence.emplace_back(top.entry->sequence());
}
EXPECT_TRUE(std::is_sorted(read_sequence.begin(), read_sequence.end()));
EXPECT_EQ(expected_sequence.size(), read_sequence.size());
EXPECT_EQ(expected_sequence, read_sequence)
<< "start: " << start << " log_mask: " << log_mask << " "
<< TestReport(expected_sequence, read_sequence);
}
// Add a chunk with the given messages to the a given log buffer. Keep track of the sequence
// numbers for future validation. Optionally mark the block as having finished writing.
void AddChunkWithMessages(bool finish_writing, int buffer,
const std::vector<std::string>& messages) REQUIRES(logd_lock) {
auto chunk = SerializedLogChunk{kChunkSize};
for (const auto& message : messages) {
auto sequence = sequence_++;
sequence_numbers_per_buffer_[buffer].emplace_back(sequence);
ASSERT_TRUE(chunk.CanLog(message.size() + 1));
chunk.Log(sequence, log_time(), 0, 1, 1, message.c_str(), message.size() + 1);
}
if (finish_writing) {
chunk.FinishWriting();
}
log_chunks_[buffer].emplace_back(std::move(chunk));
}
android::base::LogSeverity old_log_severity_;
std::map<int, std::vector<uint64_t>> sequence_numbers_per_buffer_;
std::list<SerializedLogChunk> log_chunks_[LOG_ID_MAX];
uint64_t sequence_ = 1;
};
// 0: multiple chunks, with variable number of entries, with/without finishing writing
// 1: 1 chunk with 1 log and finished writing
// 2: 1 chunk with 1 log and not finished writing
// 3: 1 chunk with 0 logs and not finished writing
// 4: 1 chunk with 0 logs and finished writing (impossible, but SerializedFlushToState handles it)
// 5-7: 0 chunks
TEST_F(SerializedFlushToStateTest, smoke) {
auto lock = std::lock_guard{logd_lock};
AddChunkWithMessages(true, 0, {"1st", "2nd"});
AddChunkWithMessages(true, 1, {"3rd"});
AddChunkWithMessages(false, 0, {"4th"});
AddChunkWithMessages(true, 0, {"4th", "5th", "more", "even", "more", "go", "here"});
AddChunkWithMessages(false, 2, {"6th"});
AddChunkWithMessages(true, 0, {"7th"});
AddChunkWithMessages(false, 3, {});
AddChunkWithMessages(true, 4, {});
TestAllReading();
}
TEST_F(SerializedFlushToStateTest, random) {
auto lock = std::lock_guard{logd_lock};
srand(1);
for (int count = 0; count < 20; ++count) {
unsigned int num_messages = 1 + rand() % 15;
auto messages = std::vector<std::string>{num_messages, "same message"};
bool compress = rand() % 2;
int buf = rand() % LOG_ID_MAX;
AddChunkWithMessages(compress, buf, messages);
}
TestAllReading();
}
// Same start as smoke, but we selectively write logs to the buffers and ensure they're read.
TEST_F(SerializedFlushToStateTest, future_writes) {
auto lock = std::lock_guard{logd_lock};
auto write_logs = [&](int loop_count) REQUIRES(logd_lock) {
switch (loop_count) {
case 0:
// Initial writes.
AddChunkWithMessages(true, 0, {"1st", "2nd"});
AddChunkWithMessages(true, 1, {"3rd"});
AddChunkWithMessages(false, 0, {"4th"});
AddChunkWithMessages(true, 0, {"4th", "5th", "more", "even", "more", "go", "here"});
AddChunkWithMessages(false, 2, {"6th"});
AddChunkWithMessages(true, 0, {"7th"});
AddChunkWithMessages(false, 3, {});
AddChunkWithMessages(true, 4, {});
break;
case 1:
// Smoke test, add a simple chunk.
AddChunkWithMessages(true, 0, {"1st", "2nd"});
break;
case 2:
// Add chunks to all but one of the logs.
AddChunkWithMessages(true, 0, {"1st", "2nd"});
AddChunkWithMessages(true, 1, {"1st", "2nd"});
AddChunkWithMessages(true, 2, {"1st", "2nd"});
AddChunkWithMessages(true, 3, {"1st", "2nd"});
AddChunkWithMessages(true, 4, {"1st", "2nd"});
AddChunkWithMessages(true, 5, {"1st", "2nd"});
AddChunkWithMessages(true, 6, {"1st", "2nd"});
break;
case 3:
// Finally add chunks to all logs.
AddChunkWithMessages(true, 0, {"1st", "2nd"});
AddChunkWithMessages(true, 1, {"1st", "2nd"});
AddChunkWithMessages(true, 2, {"1st", "2nd"});
AddChunkWithMessages(true, 3, {"1st", "2nd"});
AddChunkWithMessages(true, 4, {"1st", "2nd"});
AddChunkWithMessages(true, 5, {"1st", "2nd"});
AddChunkWithMessages(true, 6, {"1st", "2nd"});
AddChunkWithMessages(true, 7, {"1st", "2nd"});
break;
default:
return false;
}
return true;
};
TestAllReadingWithFutureMessages(write_logs);
}
TEST_F(SerializedFlushToStateTest, no_dangling_references) {
auto lock = std::lock_guard{logd_lock};
AddChunkWithMessages(true, 0, {"1st", "2nd"});
AddChunkWithMessages(true, 0, {"3rd", "4th"});
auto state = SerializedFlushToState{1, kLogMaskAll, log_chunks_};
ASSERT_EQ(log_chunks_[0].size(), 2U);
auto first_chunk = log_chunks_[0].begin();
auto second_chunk = std::next(first_chunk);
ASSERT_TRUE(state.HasUnreadLogs());
auto first_log = state.PopNextUnreadLog();
EXPECT_STREQ(first_log.entry->msg(), "1st");
EXPECT_EQ(first_chunk->reader_ref_count(), 1U);
EXPECT_EQ(second_chunk->reader_ref_count(), 0U);
ASSERT_TRUE(state.HasUnreadLogs());
auto second_log = state.PopNextUnreadLog();
EXPECT_STREQ(second_log.entry->msg(), "2nd");
EXPECT_EQ(first_chunk->reader_ref_count(), 1U);
EXPECT_EQ(second_chunk->reader_ref_count(), 0U);
ASSERT_TRUE(state.HasUnreadLogs());
auto third_log = state.PopNextUnreadLog();
EXPECT_STREQ(third_log.entry->msg(), "3rd");
EXPECT_EQ(first_chunk->reader_ref_count(), 0U);
EXPECT_EQ(second_chunk->reader_ref_count(), 1U);
ASSERT_TRUE(state.HasUnreadLogs());
auto fourth_log = state.PopNextUnreadLog();
EXPECT_STREQ(fourth_log.entry->msg(), "4th");
EXPECT_EQ(first_chunk->reader_ref_count(), 0U);
EXPECT_EQ(second_chunk->reader_ref_count(), 1U);
EXPECT_FALSE(state.HasUnreadLogs());
}
TEST(SerializedFlushToState, Prune) {
auto lock = std::lock_guard{logd_lock};
auto chunk = SerializedLogChunk{kChunkSize};
chunk.Log(1, log_time(), 0, 1, 1, "abc", 3);
chunk.Log(2, log_time(), 0, 1, 1, "abc", 3);
chunk.Log(3, log_time(), 0, 1, 1, "abc", 3);
chunk.FinishWriting();
std::list<SerializedLogChunk> log_chunks[LOG_ID_MAX];
log_chunks[LOG_ID_MAIN].emplace_back(std::move(chunk));
auto state = SerializedFlushToState{1, kLogMaskAll, log_chunks};
ASSERT_TRUE(state.HasUnreadLogs());
state.Prune(LOG_ID_MAIN);
}
|