1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SerializedLogBuffer.h"
#include <sys/prctl.h>
#include <limits>
#include <android-base/logging.h>
#include <android-base/scopeguard.h>
#include "LogSize.h"
#include "LogStatistics.h"
#include "SerializedFlushToState.h"
static SerializedLogEntry* LogToLogBuffer(std::list<SerializedLogChunk>& log_buffer,
size_t max_size, uint64_t sequence, log_time realtime,
uid_t uid, pid_t pid, pid_t tid, const char* msg,
uint16_t len) {
if (log_buffer.empty()) {
log_buffer.push_back(SerializedLogChunk(max_size / SerializedLogBuffer::kChunkSizeDivisor));
}
auto total_len = sizeof(SerializedLogEntry) + len;
if (!log_buffer.back().CanLog(total_len)) {
log_buffer.back().FinishWriting();
log_buffer.push_back(SerializedLogChunk(max_size / SerializedLogBuffer::kChunkSizeDivisor));
}
return log_buffer.back().Log(sequence, realtime, uid, pid, tid, msg, len);
}
// Clear all logs from a particular UID by iterating through all existing logs for a log_id, and
// write all logs that don't match the UID into a new log buffer, then swapping the log buffers.
// There is an optimization that chunks are copied as-is until a log message from the UID is found,
// to ensure that back-to-back clears of the same UID do not require reflowing the entire buffer.
void ClearLogsByUid(std::list<SerializedLogChunk>& log_buffer, uid_t uid, size_t max_size,
log_id_t log_id, LogStatistics* stats) REQUIRES(logd_lock) {
bool contains_uid_logs = false;
std::list<SerializedLogChunk> new_logs;
auto it = log_buffer.begin();
while (it != log_buffer.end()) {
auto chunk = it++;
chunk->NotifyReadersOfPrune(log_id);
chunk->IncReaderRefCount();
if (!contains_uid_logs) {
for (const auto& entry : *chunk) {
if (entry.uid() == uid) {
contains_uid_logs = true;
break;
}
}
if (!contains_uid_logs) {
chunk->DecReaderRefCount();
new_logs.splice(new_logs.end(), log_buffer, chunk);
continue;
}
// We found a UID log, so push a writable chunk to prepare for the next loop.
new_logs.push_back(
SerializedLogChunk(max_size / SerializedLogBuffer::kChunkSizeDivisor));
}
for (const auto& entry : *chunk) {
if (entry.uid() == uid) {
if (stats != nullptr) {
stats->Subtract(entry.ToLogStatisticsElement(log_id));
}
} else {
LogToLogBuffer(new_logs, max_size, entry.sequence(), entry.realtime(), entry.uid(),
entry.pid(), entry.tid(), entry.msg(), entry.msg_len());
}
}
chunk->DecReaderRefCount();
log_buffer.erase(chunk);
}
std::swap(new_logs, log_buffer);
}
SerializedLogBuffer::SerializedLogBuffer(LogReaderList* reader_list, LogTags* tags,
LogStatistics* stats)
: reader_list_(reader_list), tags_(tags), stats_(stats) {
Init();
}
void SerializedLogBuffer::Init() {
log_id_for_each(i) {
if (!SetSize(i, GetBufferSizeFromProperties(i))) {
SetSize(i, kLogBufferMinSize);
}
}
// Release any sleeping reader threads to dump their current content.
auto lock = std::lock_guard{logd_lock};
for (const auto& reader_thread : reader_list_->running_reader_threads()) {
reader_thread->TriggerReader();
}
}
bool SerializedLogBuffer::ShouldLog(log_id_t log_id, const char* msg, uint16_t len) {
if (log_id == LOG_ID_SECURITY) {
return true;
}
int prio = ANDROID_LOG_INFO;
const char* tag = nullptr;
size_t tag_len = 0;
if (IsBinary(log_id)) {
int32_t tag_int = MsgToTag(msg, len);
tag = tags_->tagToName(tag_int);
if (tag) {
tag_len = strlen(tag);
}
} else {
prio = *msg;
tag = msg + 1;
tag_len = strnlen(tag, len - 1);
}
return __android_log_is_loggable_len(prio, tag, tag_len, ANDROID_LOG_VERBOSE);
}
int SerializedLogBuffer::Log(log_id_t log_id, log_time realtime, uid_t uid, pid_t pid, pid_t tid,
const char* msg, uint16_t len) {
if (log_id >= LOG_ID_MAX || len == 0) {
return -EINVAL;
}
if (len > LOGGER_ENTRY_MAX_PAYLOAD) {
len = LOGGER_ENTRY_MAX_PAYLOAD;
}
if (!ShouldLog(log_id, msg, len)) {
stats_->AddTotal(log_id, len);
return -EACCES;
}
auto sequence = sequence_.fetch_add(1, std::memory_order_relaxed);
auto lock = std::lock_guard{logd_lock};
auto entry = LogToLogBuffer(logs_[log_id], max_size_[log_id], sequence, realtime, uid, pid, tid,
msg, len);
stats_->Add(entry->ToLogStatisticsElement(log_id));
MaybePrune(log_id);
reader_list_->NotifyNewLog(1 << log_id);
return len;
}
void SerializedLogBuffer::MaybePrune(log_id_t log_id) {
size_t total_size = GetSizeUsed(log_id);
size_t after_size = total_size;
if (total_size > max_size_[log_id]) {
Prune(log_id, total_size - max_size_[log_id]);
after_size = GetSizeUsed(log_id);
LOG(VERBOSE) << "Pruned Logs from log_id: " << log_id << ", previous size: " << total_size
<< " after size: " << after_size;
}
stats_->set_overhead(log_id, after_size);
}
void SerializedLogBuffer::RemoveChunkFromStats(log_id_t log_id, SerializedLogChunk& chunk) {
chunk.IncReaderRefCount();
for (const auto& entry : chunk) {
stats_->Subtract(entry.ToLogStatisticsElement(log_id));
}
chunk.DecReaderRefCount();
}
void SerializedLogBuffer::Prune(log_id_t log_id, size_t bytes_to_free) {
auto& log_buffer = logs_[log_id];
auto it = log_buffer.begin();
while (it != log_buffer.end()) {
for (const auto& reader_thread : reader_list_->running_reader_threads()) {
if (!reader_thread->IsWatching(log_id)) {
continue;
}
if (reader_thread->deadline().time_since_epoch().count() != 0) {
// Always wake up wrapped readers when pruning. 'Wrapped' readers are an
// optimization that allows the reader to wait until logs starting at a specified
// time stamp are about to be pruned. This is error-prone however, since if that
// timestamp is about to be pruned, the reader is not likely to read the messages
// fast enough to not back-up logd. Instead, we can achieve an nearly-as-efficient
// but not error-prune batching effect by waking the reader whenever any chunk is
// about to be pruned.
reader_thread->TriggerReader();
}
// Some readers may be still reading from this log chunk, log a warning that they are
// about to lose logs.
// TODO: We should forcefully disconnect the reader instead, such that the reader itself
// has an indication that they've lost logs.
if (reader_thread->start() <= it->highest_sequence_number()) {
LOG(WARNING) << "Skipping entries from slow reader, " << reader_thread->name()
<< ", from LogBuffer::Prune()";
}
}
// Increment ahead of time since we're going to erase this iterator from the list.
auto it_to_prune = it++;
// Readers may have a reference to the chunk to track their last read log_position.
// Notify them to delete the reference.
it_to_prune->NotifyReadersOfPrune(log_id);
size_t buffer_size = it_to_prune->PruneSize();
RemoveChunkFromStats(log_id, *it_to_prune);
log_buffer.erase(it_to_prune);
if (buffer_size >= bytes_to_free) {
return;
}
bytes_to_free -= buffer_size;
}
}
void SerializedLogBuffer::UidClear(log_id_t log_id, uid_t uid) {
// Wake all readers; see comment in Prune().
for (const auto& reader_thread : reader_list_->running_reader_threads()) {
if (!reader_thread->IsWatching(log_id)) {
continue;
}
if (reader_thread->deadline().time_since_epoch().count() != 0) {
reader_thread->TriggerReader();
}
}
ClearLogsByUid(logs_[log_id], uid, max_size_[log_id], log_id, stats_);
}
std::unique_ptr<FlushToState> SerializedLogBuffer::CreateFlushToState(uint64_t start,
LogMask log_mask) {
return std::make_unique<SerializedFlushToState>(start, log_mask, logs_);
}
bool SerializedLogBuffer::FlushTo(
LogWriter* writer, FlushToState& abstract_state,
const std::function<FilterResult(log_id_t log_id, pid_t pid, uint64_t sequence,
log_time realtime)>& filter) {
auto& state = reinterpret_cast<SerializedFlushToState&>(abstract_state);
while (state.HasUnreadLogs()) {
LogWithId top = state.PopNextUnreadLog();
auto* entry = top.entry;
auto log_id = top.log_id;
if (entry->sequence() < state.start()) {
continue;
}
state.set_start(entry->sequence());
if (!writer->privileged() && entry->uid() != writer->uid()) {
continue;
}
if (filter) {
auto ret = filter(log_id, entry->pid(), entry->sequence(), entry->realtime());
if (ret == FilterResult::kSkip) {
continue;
}
if (ret == FilterResult::kStop) {
break;
}
}
// We copy the log entry such that we can flush it without the lock. We never block pruning
// waiting for this Flush() to complete.
constexpr size_t kMaxEntrySize = sizeof(*entry) + LOGGER_ENTRY_MAX_PAYLOAD + 1;
unsigned char entry_copy[kMaxEntrySize] __attribute__((uninitialized));
CHECK_LT(entry->msg_len(), LOGGER_ENTRY_MAX_PAYLOAD + 1);
memcpy(entry_copy, entry, sizeof(*entry) + entry->msg_len());
logd_lock.unlock();
if (!reinterpret_cast<SerializedLogEntry*>(entry_copy)->Flush(writer, log_id)) {
logd_lock.lock();
return false;
}
logd_lock.lock();
}
state.set_start(state.start() + 1);
return true;
}
bool SerializedLogBuffer::Clear(log_id_t id, uid_t uid) {
auto lock = std::lock_guard{logd_lock};
if (uid == 0) {
Prune(id, ULONG_MAX);
} else {
UidClear(id, uid);
}
// Clearing SerializedLogBuffer never waits for readers and therefore is always successful.
return true;
}
size_t SerializedLogBuffer::GetSizeUsed(log_id_t id) {
size_t total_size = 0;
for (const auto& chunk : logs_[id]) {
total_size += chunk.PruneSize();
}
return total_size;
}
size_t SerializedLogBuffer::GetSize(log_id_t id) {
auto lock = std::lock_guard{logd_lock};
return max_size_[id];
}
// New SerializedLogChunk objects will be allocated according to the new size, but older one are
// unchanged. MaybePrune() is called on the log buffer to reduce it to an appropriate size if the
// new size is lower.
bool SerializedLogBuffer::SetSize(log_id_t id, size_t size) {
// Reasonable limits ...
if (!IsValidBufferSize(size)) {
return false;
}
auto lock = std::lock_guard{logd_lock};
max_size_[id] = size;
MaybePrune(id);
return true;
}
|