1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <ftl/enum.h>
#include <ftl/string.h>
#include <bitset>
#include <cstdint>
#include <iterator>
#include <string>
#include <type_traits>
// TODO(b/185536303): Align with FTL style.
namespace android::ftl {
/* A class for handling flags defined by an enum or enum class in a type-safe way. */
template <typename F>
class Flags {
// F must be an enum or its underlying type is undefined. Theoretically we could specialize this
// further to avoid this restriction but in general we want to encourage the use of enums
// anyways.
static_assert(std::is_enum_v<F>, "Flags type must be an enum");
using U = std::underlying_type_t<F>;
public:
constexpr Flags(F f) : mFlags(static_cast<U>(f)) {}
constexpr Flags() : mFlags(0) {}
constexpr Flags(const Flags<F>& f) : mFlags(f.mFlags) {}
// Provide a non-explicit construct for non-enum classes since they easily convert to their
// underlying types (e.g. when used with bitwise operators). For enum classes, however, we
// should force them to be explicitly constructed from their underlying types to make full use
// of the type checker.
template <typename T = U>
constexpr Flags(T t, std::enable_if_t<!is_scoped_enum_v<F>, T>* = nullptr) : mFlags(t) {}
template <typename T = U>
explicit constexpr Flags(T t, std::enable_if_t<is_scoped_enum_v<F>, T>* = nullptr)
: mFlags(t) {}
class Iterator {
using Bits = std::uint64_t;
static_assert(sizeof(U) <= sizeof(Bits));
public:
constexpr Iterator() = default;
Iterator(Flags<F> flags) : mRemainingFlags(flags.mFlags) { (*this)++; }
// Pre-fix ++
Iterator& operator++() {
if (mRemainingFlags.none()) {
mCurrFlag = 0;
} else {
// TODO: Replace with std::countr_zero in C++20.
const Bits bit = static_cast<Bits>(__builtin_ctzll(mRemainingFlags.to_ullong()));
mRemainingFlags.reset(static_cast<std::size_t>(bit));
mCurrFlag = static_cast<U>(static_cast<Bits>(1) << bit);
}
return *this;
}
// Post-fix ++
Iterator operator++(int) {
Iterator iter = *this;
++*this;
return iter;
}
bool operator==(Iterator other) const {
return mCurrFlag == other.mCurrFlag && mRemainingFlags == other.mRemainingFlags;
}
bool operator!=(Iterator other) const { return !(*this == other); }
F operator*() const { return F{mCurrFlag}; }
// iterator traits
// In the future we could make this a bidirectional const iterator instead of a forward
// iterator but it doesn't seem worth the added complexity at this point. This could not,
// however, be made a non-const iterator as assigning one flag to another is a non-sensical
// operation.
using iterator_category = std::input_iterator_tag;
using value_type = F;
// Per the C++ spec, because input iterators are not assignable the iterator's reference
// type does not actually need to be a reference. In fact, making it a reference would imply
// that modifying it would change the underlying Flags object, which is obviously wrong for
// the same reason this can't be a non-const iterator.
using reference = F;
using difference_type = void;
using pointer = void;
private:
std::bitset<sizeof(Bits) * 8> mRemainingFlags;
U mCurrFlag = 0;
};
/*
* Tests whether the given flag is set.
*/
bool test(F flag) const {
U f = static_cast<U>(flag);
return (f & mFlags) == f;
}
/* Tests whether any of the given flags are set */
bool any(Flags<F> f = ~Flags<F>()) const { return (mFlags & f.mFlags) != 0; }
/* Tests whether all of the given flags are set */
bool all(Flags<F> f) const { return (mFlags & f.mFlags) == f.mFlags; }
constexpr Flags<F> operator|(Flags<F> rhs) const { return static_cast<F>(mFlags | rhs.mFlags); }
Flags<F>& operator|=(Flags<F> rhs) {
mFlags = mFlags | rhs.mFlags;
return *this;
}
Flags<F> operator&(Flags<F> rhs) const { return static_cast<F>(mFlags & rhs.mFlags); }
Flags<F>& operator&=(Flags<F> rhs) {
mFlags = mFlags & rhs.mFlags;
return *this;
}
Flags<F> operator^(Flags<F> rhs) const { return static_cast<F>(mFlags ^ rhs.mFlags); }
Flags<F>& operator^=(Flags<F> rhs) {
mFlags = mFlags ^ rhs.mFlags;
return *this;
}
Flags<F> operator~() { return static_cast<F>(~mFlags); }
bool operator==(Flags<F> rhs) const { return mFlags == rhs.mFlags; }
bool operator!=(Flags<F> rhs) const { return !operator==(rhs); }
Flags<F>& operator=(const Flags<F>& rhs) {
mFlags = rhs.mFlags;
return *this;
}
inline Flags<F>& clear(Flags<F> f = static_cast<F>(~static_cast<U>(0))) {
return *this &= ~f;
}
Iterator begin() const { return Iterator(*this); }
Iterator end() const { return Iterator(); }
/*
* Returns the stored set of flags.
*
* Note that this returns the underlying type rather than the base enum class. This is because
* the value is no longer necessarily a strict member of the enum since the returned value could
* be multiple enum variants OR'd together.
*/
U get() const { return mFlags; }
std::string string() const {
std::string result;
bool first = true;
U unstringified = 0;
for (const F f : *this) {
if (const auto flagName = flag_name(f)) {
appendFlag(result, flagName.value(), first);
} else {
unstringified |= static_cast<U>(f);
}
}
if (unstringified != 0) {
constexpr auto radix = sizeof(U) == 1 ? Radix::kBin : Radix::kHex;
appendFlag(result, to_string(unstringified, radix), first);
}
if (first) {
result += "0x0";
}
return result;
}
private:
U mFlags;
static void appendFlag(std::string& str, const std::string_view& flag, bool& first) {
if (first) {
first = false;
} else {
str += " | ";
}
str += flag;
}
};
// This namespace provides operator overloads for enum classes to make it easier to work with them
// as flags. In order to use these, add them via a `using namespace` declaration.
namespace flag_operators {
template <typename F, typename = std::enable_if_t<is_scoped_enum_v<F>>>
inline Flags<F> operator~(F f) {
return static_cast<F>(~to_underlying(f));
}
template <typename F, typename = std::enable_if_t<is_scoped_enum_v<F>>>
constexpr Flags<F> operator|(F lhs, F rhs) {
return static_cast<F>(to_underlying(lhs) | to_underlying(rhs));
}
} // namespace flag_operators
} // namespace android::ftl
|