1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cstddef>
#include <functional>
#include <type_traits>
#include <utility>
#include <ftl/details/function.h>
namespace android::ftl {
// ftl::Function<F, N> is a container for function object, and can mostly be used in place of
// std::function<F>.
//
// Unlike std::function<F>, a ftl::Function<F, N>:
//
// * Uses a static amount of memory (controlled by N), and never any dynamic allocation.
// * Satisfies the std::is_trivially_copyable<> trait.
// * Satisfies the std::is_trivially_destructible<> trait.
//
// However those same limits are also required from the contained function object in turn.
//
// The size of a ftl::Function<F, N> is guaranteed to be:
//
// sizeof(std::intptr_t) * (N + 2)
//
// A ftl::Function<F, N> can always be implicitly converted to a larger size ftl::Function<F, M>.
// Trying to convert the other way leads to a compilation error.
//
// A default-constructed ftl::Function is in an empty state. The operator bool() overload returns
// false in this state. It is undefined behavior to attempt to invoke the function in this state.
//
// The ftl::Function<F, N> can also be constructed or assigned from ftl::no_op. This sets up the
// ftl::Function to be non-empty, with a function that when called does nothing except
// default-constructs a return value.
//
// The ftl::make_function() helpers construct a ftl::Function<F, N>, including deducing the
// values of F and N from the arguments it is given.
//
// The static ftl::Function<F, N>::make() helpers construct a ftl::Function<F, N> without that
// deduction, and also allow for implicit argument conversion if the target being called needs them.
//
// The construction helpers allow any of the following types of functions to be stored:
//
// * Any SMALL function object (as defined by the C++ Standard), such as a lambda with a small
// capture, or other "functor". The requirements are:
//
// 1) The function object must be trivial to destroy (in fact, the destructor will never
// actually be called once copied to the internal storage).
// 2) The function object must be trivial to copy (the raw bytes will be copied as the
// ftl::Function<F, N> is copied/moved).
// 3) The size of the function object cannot be larger than sizeof(std::intptr_t) * (N + 1),
// and it cannot require stricter alignment than alignof(std::intptr_t).
//
// With the default of N=0, a lambda can only capture a single pointer-sized argument. This is
// enough to capture `this`, which is why N=0 is the default.
//
// * A member function, with the address passed as the template value argument to the construction
// helper function, along with the instance pointer needed to invoke it passed as an ordinary
// argument.
//
// ftl::make_function<&Class::member_function>(this);
//
// Note that the indicated member function will be invoked non-virtually. If you need it to be
// invoked virtually, you should invoke it yourself with a small lambda like so:
//
// ftl::function([this] { virtual_member_function(); });
//
// * An ordinary function ("free function"), with the address of the function passed as a template
// value argument.
//
// ftl::make_function<&std::atoi>();
//
// As with the member function helper, as the function is known at compile time, it will be called
// directly.
//
// Example usage:
//
// class MyClass {
// public:
// void on_event() const {}
// int on_string(int*, std::string_view) { return 1; }
//
// auto get_function() {
// return ftl::function([this] { on_event(); });
// }
// } cls;
//
// // A function container with no arguments, and returning no value.
// ftl::Function<void()> f;
//
// // Construct a ftl::Function containing a small lambda.
// f = cls.get_function();
//
// // Construct a ftl::Function that calls `cls.on_event()`.
// f = ftl::function<&MyClass::on_event>(&cls);
//
// // Create a do-nothing function.
// f = ftl::no_op;
//
// // Invoke the contained function.
// f();
//
// // Also invokes it.
// std::invoke(f);
//
// // Create a typedef to give a more meaningful name and bound the size.
// using MyFunction = ftl::Function<int(std::string_view), 2>;
// int* ptr = nullptr;
// auto f1 = MyFunction::make_function(
// [cls = &cls, ptr](std::string_view sv) {
// return cls->on_string(ptr, sv);
// });
// int r = f1("abc"sv);
//
// // Returns a default-constructed int (0).
// f1 = ftl::no_op;
// r = f1("abc"sv);
// assert(r == 0);
template <typename F, std::size_t N = 0>
class Function;
// Used to construct a Function that does nothing.
struct NoOpTag {};
constexpr NoOpTag no_op;
// Detects that a type is a `ftl::Function<F, N>` regardless of what `F` and `N` are.
template <typename>
struct is_function : public std::false_type {};
template <typename F, std::size_t N>
struct is_function<Function<F, N>> : public std::true_type {};
template <typename T>
constexpr bool is_function_v = is_function<T>::value;
template <typename Ret, typename... Args, std::size_t N>
class Function<Ret(Args...), N> final {
// Enforce a valid size, with an arbitrary maximum allowed size for the container of
// sizeof(std::intptr_t) * 16, though that maximum can be relaxed.
static_assert(N <= details::kFunctionMaximumN);
using OpaqueStorageTraits = details::function_opaque_storage<N>;
public:
// Defining result_type allows ftl::Function to be substituted for std::function.
using result_type = Ret;
// Constructs an empty ftl::Function.
Function() = default;
// Constructing or assigning from nullptr_t also creates an empty ftl::Function.
Function(std::nullptr_t) {}
Function& operator=(std::nullptr_t) { return *this = Function(nullptr); }
// Constructing from NoOpTag sets up a a special no-op function which is valid to call, and which
// returns a default constructed return value.
Function(NoOpTag) : function_(details::bind_opaque_no_op<Ret, Args...>()) {}
Function& operator=(NoOpTag) { return *this = Function(no_op); }
// Constructing/assigning from a function object stores a copy of that function object, however:
// * It must be trivially copyable, as the implementation makes a copy with memcpy().
// * It must be trivially destructible, as the implementation doesn't destroy the copy!
// * It must fit in the limited internal storage, which enforces size/alignment restrictions.
template <typename F, typename = std::enable_if_t<std::is_invocable_r_v<Ret, F, Args...>>>
Function(const F& f)
: opaque_(OpaqueStorageTraits::opaque_copy(f)),
function_(details::bind_opaque_function_object<F, Ret, Args...>(f)) {}
template <typename F, typename = std::enable_if_t<std::is_invocable_r_v<Ret, F, Args...>>>
Function& operator=(const F& f) noexcept {
return *this = Function{OpaqueStorageTraits::opaque_copy(f),
details::bind_opaque_function_object<F, Ret, Args...>(f)};
}
// Constructing/assigning from a smaller ftl::Function is allowed, but not anything else.
template <std::size_t M>
Function(const Function<Ret(Args...), M>& other)
: opaque_{OpaqueStorageTraits::opaque_copy(other.opaque_)}, function_(other.function_) {}
template <std::size_t M>
auto& operator=(const Function<Ret(Args...), M>& other) {
return *this = Function{OpaqueStorageTraits::opaque_copy(other.opaque_), other.function_};
}
// Returns true if a function is set.
explicit operator bool() const { return function_ != nullptr; }
// Checks if the other function has the same contents as this one.
bool operator==(const Function& other) const {
return other.opaque_ == opaque_ && other.function_ == function_;
}
bool operator!=(const Function& other) const { return !operator==(other); }
// Alternative way of testing for a function being set.
bool operator==(std::nullptr_t) const { return function_ == nullptr; }
bool operator!=(std::nullptr_t) const { return function_ != nullptr; }
// Invokes the function.
Ret operator()(Args... args) const {
return std::invoke(function_, opaque_.data(), std::forward<Args>(args)...);
}
// Creation helper for function objects, such as lambdas.
template <typename F>
static auto make(const F& f) -> decltype(Function{f}) {
return Function{f};
}
// Creation helper for a class pointer and a compile-time chosen member function to call.
template <auto MemberFunction, typename Class>
static auto make(Class* instance) -> decltype(Function{
details::bind_member_function<MemberFunction>(instance,
static_cast<Ret (*)(Args...)>(nullptr))}) {
return Function{details::bind_member_function<MemberFunction>(
instance, static_cast<Ret (*)(Args...)>(nullptr))};
}
// Creation helper for a compile-time chosen free function to call.
template <auto FreeFunction>
static auto make() -> decltype(Function{
details::bind_free_function<FreeFunction>(static_cast<Ret (*)(Args...)>(nullptr))}) {
return Function{
details::bind_free_function<FreeFunction>(static_cast<Ret (*)(Args...)>(nullptr))};
}
private:
// Needed so a Function<F, M> can be converted to a Function<F, N>.
template <typename, std::size_t>
friend class Function;
// The function pointer type of function stored in `function_`. The first argument is always
// `&opaque_`.
using StoredFunction = Ret(void*, Args...);
// The type of the opaque storage, used to hold an appropriate function object.
// The type stored here is ONLY known to the StoredFunction.
// We always use at least one std::intptr_t worth of storage, and always a multiple of that size.
using OpaqueStorage = typename OpaqueStorageTraits::type;
// Internal constructor for creating from a raw opaque blob + function pointer.
Function(const OpaqueStorage& opaque, StoredFunction* function)
: opaque_(opaque), function_(function) {}
// Note: `mutable` so that `operator() const` can use it.
mutable OpaqueStorage opaque_{};
StoredFunction* function_{nullptr};
};
// Makes a ftl::Function given a function object `F`.
template <typename F, typename T = details::function_traits<F>>
Function(const F&) -> Function<typename T::type, T::size>;
template <typename F>
auto make_function(const F& f) -> decltype(Function{f}) {
return Function{f};
}
// Makes a ftl::Function given a `MemberFunction` and a instance pointer to the associated `Class`.
template <auto MemberFunction, typename Class>
auto make_function(Class* instance)
-> decltype(Function{details::bind_member_function<MemberFunction>(
instance,
static_cast<details::remove_member_function_pointer_t<MemberFunction>*>(nullptr))}) {
return Function{details::bind_member_function<MemberFunction>(
instance, static_cast<details::remove_member_function_pointer_t<MemberFunction>*>(nullptr))};
}
// Makes a ftl::Function given an ordinary free function.
template <auto FreeFunction>
auto make_function() -> decltype(Function{
details::bind_free_function<FreeFunction>(static_cast<decltype(FreeFunction)>(nullptr))}) {
return Function{
details::bind_free_function<FreeFunction>(static_cast<decltype(FreeFunction)>(nullptr))};
}
} // namespace android::ftl
|