1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <functional>
#include <optional>
#include <utility>
#include <ftl/details/optional.h>
namespace android::ftl {
// Superset of std::optional<T> with monadic operations, as proposed in https://wg21.link/P0798R8.
//
// TODO: Remove in C++23.
//
template <typename T>
struct Optional final : std::optional<T> {
using std::optional<T>::optional;
// Implicit downcast.
Optional(std::optional<T> other) : std::optional<T>(std::move(other)) {}
using std::optional<T>::has_value;
using std::optional<T>::value;
// Returns Optional<U> where F is a function that maps T to U.
template <typename F>
constexpr auto transform(F&& f) const& {
using R = details::transform_result_t<F, decltype(value())>;
if (has_value()) return R(std::invoke(std::forward<F>(f), value()));
return R();
}
template <typename F>
constexpr auto transform(F&& f) & {
using R = details::transform_result_t<F, decltype(value())>;
if (has_value()) return R(std::invoke(std::forward<F>(f), value()));
return R();
}
template <typename F>
constexpr auto transform(F&& f) const&& {
using R = details::transform_result_t<F, decltype(std::move(value()))>;
if (has_value()) return R(std::invoke(std::forward<F>(f), std::move(value())));
return R();
}
template <typename F>
constexpr auto transform(F&& f) && {
using R = details::transform_result_t<F, decltype(std::move(value()))>;
if (has_value()) return R(std::invoke(std::forward<F>(f), std::move(value())));
return R();
}
// Returns Optional<U> where F is a function that maps T to Optional<U>.
template <typename F>
constexpr auto and_then(F&& f) const& {
using R = details::and_then_result_t<F, decltype(value())>;
if (has_value()) return std::invoke(std::forward<F>(f), value());
return R();
}
template <typename F>
constexpr auto and_then(F&& f) & {
using R = details::and_then_result_t<F, decltype(value())>;
if (has_value()) return std::invoke(std::forward<F>(f), value());
return R();
}
template <typename F>
constexpr auto and_then(F&& f) const&& {
using R = details::and_then_result_t<F, decltype(std::move(value()))>;
if (has_value()) return std::invoke(std::forward<F>(f), std::move(value()));
return R();
}
template <typename F>
constexpr auto and_then(F&& f) && {
using R = details::and_then_result_t<F, decltype(std::move(value()))>;
if (has_value()) return std::invoke(std::forward<F>(f), std::move(value()));
return R();
}
// Returns this Optional<T> if not nullopt, or else the Optional<T> returned by the function F.
template <typename F>
constexpr auto or_else(F&& f) const& -> details::or_else_result_t<F, T> {
if (has_value()) return *this;
return std::forward<F>(f)();
}
template <typename F>
constexpr auto or_else(F&& f) && -> details::or_else_result_t<F, T> {
if (has_value()) return std::move(*this);
return std::forward<F>(f)();
}
// Delete new for this class. Its base doesn't have a virtual destructor, and
// if it got deleted via base class pointer, it would cause undefined
// behavior. There's not a good reason to allocate this object on the heap
// anyway.
static void* operator new(size_t) = delete;
static void* operator new[](size_t) = delete;
};
template <typename T, typename U>
constexpr bool operator==(const Optional<T>& lhs, const Optional<U>& rhs) {
return static_cast<std::optional<T>>(lhs) == static_cast<std::optional<U>>(rhs);
}
template <typename T, typename U>
constexpr bool operator!=(const Optional<T>& lhs, const Optional<U>& rhs) {
return !(lhs == rhs);
}
// Deduction guides.
template <typename T>
Optional(T) -> Optional<T>;
template <typename T>
Optional(std::optional<T>) -> Optional<T>;
} // namespace android::ftl
|