1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <ftl/details/array_traits.h>
#include <ftl/static_vector.h>
#include <algorithm>
#include <iterator>
#include <utility>
#include <variant>
#include <vector>
#include <ftl/details/type_traits.h>
namespace android::ftl {
template <typename>
struct is_small_vector;
// ftl::StaticVector that promotes to std::vector when full. SmallVector is a drop-in replacement
// for std::vector with statically allocated storage for N elements, whose goal is to improve run
// time by avoiding heap allocation and increasing probability of cache hits. The standard API is
// augmented by an unstable_erase operation that does not preserve order, and a replace operation
// that destructively emplaces.
//
// Unlike std::vector, T does not require copy/move assignment, so may be an object with const data
// members, or be const itself.
//
// SmallVector<T, 0> is a specialization that thinly wraps std::vector.
//
// Example usage:
//
// ftl::SmallVector<char, 3> vector;
// assert(vector.empty());
// assert(!vector.dynamic());
//
// vector = {'a', 'b', 'c'};
// assert(vector.size() == 3u);
// assert(!vector.dynamic());
//
// vector.push_back('d');
// assert(vector.dynamic());
//
// vector.unstable_erase(vector.begin());
// assert(vector == (ftl::SmallVector{'d', 'b', 'c'}));
//
// vector.pop_back();
// assert(vector.back() == 'b');
// assert(vector.dynamic());
//
// const char array[] = "hi";
// vector = ftl::SmallVector(array);
// assert(vector == (ftl::SmallVector{'h', 'i', '\0'}));
// assert(!vector.dynamic());
//
// ftl::SmallVector strings = ftl::init::list<std::string>("abc")("123456", 3u)(3u, '?');
// assert(strings.size() == 3u);
// assert(!strings.dynamic());
//
// assert(strings[0] == "abc");
// assert(strings[1] == "123");
// assert(strings[2] == "???");
//
template <typename T, std::size_t N>
class SmallVector final : details::ArrayTraits<T>, details::ArrayComparators<SmallVector> {
using Static = StaticVector<T, N>;
using Dynamic = SmallVector<T, 0>;
public:
FTL_ARRAY_TRAIT(T, value_type);
FTL_ARRAY_TRAIT(T, size_type);
FTL_ARRAY_TRAIT(T, difference_type);
FTL_ARRAY_TRAIT(T, pointer);
FTL_ARRAY_TRAIT(T, reference);
FTL_ARRAY_TRAIT(T, iterator);
FTL_ARRAY_TRAIT(T, reverse_iterator);
FTL_ARRAY_TRAIT(T, const_pointer);
FTL_ARRAY_TRAIT(T, const_reference);
FTL_ARRAY_TRAIT(T, const_iterator);
FTL_ARRAY_TRAIT(T, const_reverse_iterator);
// Creates an empty vector.
SmallVector() = default;
// Constructs at most N elements. See StaticVector for underlying constructors.
template <typename Arg, typename... Args,
typename = std::enable_if_t<!is_small_vector<details::remove_cvref_t<Arg>>{}>>
SmallVector(Arg&& arg, Args&&... args)
: vector_(std::in_place_type<Static>, std::forward<Arg>(arg), std::forward<Args>(args)...) {}
// Copies or moves elements from a smaller convertible vector.
template <typename U, std::size_t M, typename = std::enable_if_t<(M > 0)>>
SmallVector(SmallVector<U, M> other) : vector_(convert(std::move(other))) {}
void swap(SmallVector& other) { vector_.swap(other.vector_); }
// Returns whether the vector is backed by static or dynamic storage.
bool dynamic() const { return std::holds_alternative<Dynamic>(vector_); }
// Avoid std::visit as it generates a dispatch table.
#define DISPATCH(T, F, ...) \
T F() __VA_ARGS__ { \
return dynamic() ? std::get<Dynamic>(vector_).F() : std::get<Static>(vector_).F(); \
}
DISPATCH(size_type, max_size, const)
DISPATCH(size_type, size, const)
DISPATCH(bool, empty, const)
DISPATCH(iterator, begin, )
DISPATCH(const_iterator, begin, const)
DISPATCH(const_iterator, cbegin, const)
DISPATCH(iterator, end, )
DISPATCH(const_iterator, end, const)
DISPATCH(const_iterator, cend, const)
DISPATCH(reverse_iterator, rbegin, )
DISPATCH(const_reverse_iterator, rbegin, const)
DISPATCH(const_reverse_iterator, crbegin, const)
DISPATCH(reverse_iterator, rend, )
DISPATCH(const_reverse_iterator, rend, const)
DISPATCH(const_reverse_iterator, crend, const)
DISPATCH(iterator, last, )
DISPATCH(const_iterator, last, const)
DISPATCH(reference, front, )
DISPATCH(const_reference, front, const)
DISPATCH(reference, back, )
DISPATCH(const_reference, back, const)
reference operator[](size_type i) {
return dynamic() ? std::get<Dynamic>(vector_)[i] : std::get<Static>(vector_)[i];
}
const_reference operator[](size_type i) const { return const_cast<SmallVector&>(*this)[i]; }
// Replaces an element, and returns a reference to it. The iterator must be dereferenceable, so
// replacing at end() is erroneous.
//
// The element is emplaced via move constructor, so type T does not need to define copy/move
// assignment, e.g. its data members may be const.
//
// The arguments may directly or indirectly refer to the element being replaced.
//
// Iterators to the replaced element point to its replacement, and others remain valid.
//
template <typename... Args>
reference replace(const_iterator it, Args&&... args) {
if (dynamic()) {
return std::get<Dynamic>(vector_).replace(it, std::forward<Args>(args)...);
} else {
return std::get<Static>(vector_).replace(it, std::forward<Args>(args)...);
}
}
// Appends an element, and returns a reference to it.
//
// If the vector reaches its static or dynamic capacity, then all iterators are invalidated.
// Otherwise, only the end() iterator is invalidated.
//
template <typename... Args>
reference emplace_back(Args&&... args) {
constexpr auto kInsertStatic = &Static::template emplace_back<Args...>;
constexpr auto kInsertDynamic = &Dynamic::template emplace_back<Args...>;
return *insert<kInsertStatic, kInsertDynamic>(std::forward<Args>(args)...);
}
// Appends an element.
//
// If the vector reaches its static or dynamic capacity, then all iterators are invalidated.
// Otherwise, only the end() iterator is invalidated.
//
void push_back(const value_type& v) {
constexpr auto kInsertStatic =
static_cast<bool (Static::*)(const value_type&)>(&Static::push_back);
constexpr auto kInsertDynamic =
static_cast<bool (Dynamic::*)(const value_type&)>(&Dynamic::push_back);
insert<kInsertStatic, kInsertDynamic>(v);
}
void push_back(value_type&& v) {
constexpr auto kInsertStatic = static_cast<bool (Static::*)(value_type &&)>(&Static::push_back);
constexpr auto kInsertDynamic =
static_cast<bool (Dynamic::*)(value_type &&)>(&Dynamic::push_back);
insert<kInsertStatic, kInsertDynamic>(std::move(v));
}
// Removes the last element. The vector must not be empty, or the call is erroneous.
//
// The last() and end() iterators are invalidated.
//
DISPATCH(void, pop_back, )
// Removes all elements.
//
// All iterators are invalidated.
//
DISPATCH(void, clear, )
#undef DISPATCH
// Erases an element, but does not preserve order. Rather than shifting subsequent elements,
// this moves the last element to the slot of the erased element.
//
// The last() and end() iterators, as well as those to the erased element, are invalidated.
//
void unstable_erase(iterator it) {
if (dynamic()) {
std::get<Dynamic>(vector_).unstable_erase(it);
} else {
std::get<Static>(vector_).unstable_erase(it);
}
}
// Extracts the elements as std::vector.
std::vector<T> promote() && {
if (dynamic()) {
return std::get<Dynamic>(std::move(vector_)).promote();
} else {
return {std::make_move_iterator(begin()), std::make_move_iterator(end())};
}
}
private:
template <typename, std::size_t>
friend class SmallVector;
template <typename U, std::size_t M>
static std::variant<Static, Dynamic> convert(SmallVector<U, M>&& other) {
using Other = SmallVector<U, M>;
if (other.dynamic()) {
return std::get<typename Other::Dynamic>(std::move(other.vector_));
} else {
return std::get<typename Other::Static>(std::move(other.vector_));
}
}
template <auto InsertStatic, auto InsertDynamic, typename... Args>
auto insert(Args&&... args) {
if (Dynamic* const vector = std::get_if<Dynamic>(&vector_)) {
return (vector->*InsertDynamic)(std::forward<Args>(args)...);
}
auto& vector = std::get<Static>(vector_);
if (vector.full()) {
return (promote(vector).*InsertDynamic)(std::forward<Args>(args)...);
} else {
return (vector.*InsertStatic)(std::forward<Args>(args)...);
}
}
Dynamic& promote(Static& static_vector) {
assert(static_vector.full());
// Allocate double capacity to reduce probability of reallocation.
Dynamic vector;
vector.reserve(Static::max_size() * 2);
std::move(static_vector.begin(), static_vector.end(), std::back_inserter(vector));
return vector_.template emplace<Dynamic>(std::move(vector));
}
std::variant<Static, Dynamic> vector_;
};
// Partial specialization without static storage.
template <typename T>
class SmallVector<T, 0> final : details::ArrayTraits<T>,
details::ArrayComparators<SmallVector>,
details::ArrayIterators<SmallVector<T, 0>, T>,
std::vector<T> {
using details::ArrayTraits<T>::replace_at;
using Iter = details::ArrayIterators<SmallVector, T>;
using Impl = std::vector<T>;
friend Iter;
public:
FTL_ARRAY_TRAIT(T, value_type);
FTL_ARRAY_TRAIT(T, size_type);
FTL_ARRAY_TRAIT(T, difference_type);
FTL_ARRAY_TRAIT(T, pointer);
FTL_ARRAY_TRAIT(T, reference);
FTL_ARRAY_TRAIT(T, iterator);
FTL_ARRAY_TRAIT(T, reverse_iterator);
FTL_ARRAY_TRAIT(T, const_pointer);
FTL_ARRAY_TRAIT(T, const_reference);
FTL_ARRAY_TRAIT(T, const_iterator);
FTL_ARRAY_TRAIT(T, const_reverse_iterator);
// See std::vector for underlying constructors.
using Impl::Impl;
// Copies and moves a vector, respectively.
SmallVector(const SmallVector&) = default;
SmallVector(SmallVector&&) = default;
// Constructs elements in place. See StaticVector for underlying constructor.
template <typename U, std::size_t... Sizes, typename... Types>
SmallVector(InitializerList<U, std::index_sequence<Sizes...>, Types...>&& list)
: SmallVector(SmallVector<T, sizeof...(Sizes)>(std::move(list))) {}
// Copies or moves elements from a convertible vector.
template <typename U, std::size_t M>
SmallVector(SmallVector<U, M> other) : Impl(convert(std::move(other))) {}
SmallVector& operator=(SmallVector other) {
// Define copy/move assignment in terms of copy/move construction.
swap(other);
return *this;
}
void swap(SmallVector& other) { Impl::swap(other); }
using Impl::empty;
using Impl::max_size;
using Impl::size;
using Impl::reserve;
// std::vector iterators are not necessarily raw pointers.
iterator begin() { return Impl::data(); }
iterator end() { return Impl::data() + size(); }
using Iter::begin;
using Iter::end;
using Iter::cbegin;
using Iter::cend;
using Iter::rbegin;
using Iter::rend;
using Iter::crbegin;
using Iter::crend;
using Iter::last;
using Iter::back;
using Iter::front;
using Iter::operator[];
template <typename... Args>
reference replace(const_iterator it, Args&&... args) {
return replace_at(it, std::forward<Args>(args)...);
}
template <typename... Args>
iterator emplace_back(Args&&... args) {
return &Impl::emplace_back(std::forward<Args>(args)...);
}
bool push_back(const value_type& v) {
Impl::push_back(v);
return true;
}
bool push_back(value_type&& v) {
Impl::push_back(std::move(v));
return true;
}
using Impl::clear;
using Impl::pop_back;
void unstable_erase(iterator it) {
if (it != last()) replace(it, std::move(back()));
pop_back();
}
std::vector<T> promote() && { return std::move(*this); }
private:
template <typename U, std::size_t M>
static Impl convert(SmallVector<U, M>&& other) {
if constexpr (std::is_constructible_v<Impl, std::vector<U>&&>) {
return std::move(other).promote();
} else {
SmallVector vector(other.size());
// Consistently with StaticVector, T only requires copy/move construction from U, rather than
// copy/move assignment.
auto it = vector.begin();
for (auto& element : other) {
vector.replace(it++, std::move(element));
}
return vector;
}
}
};
template <typename>
struct is_small_vector : std::false_type {};
template <typename T, std::size_t N>
struct is_small_vector<SmallVector<T, N>> : std::true_type {};
// Deduction guide for array constructor.
template <typename T, std::size_t N>
SmallVector(T (&)[N]) -> SmallVector<std::remove_cv_t<T>, N>;
// Deduction guide for variadic constructor.
template <typename T, typename... Us, typename V = std::decay_t<T>,
typename = std::enable_if_t<(std::is_constructible_v<V, Us> && ...)>>
SmallVector(T&&, Us&&...) -> SmallVector<V, 1 + sizeof...(Us)>;
// Deduction guide for in-place constructor.
template <typename T, std::size_t... Sizes, typename... Types>
SmallVector(InitializerList<T, std::index_sequence<Sizes...>, Types...>&&)
-> SmallVector<T, sizeof...(Sizes)>;
// Deduction guide for StaticVector conversion.
template <typename T, std::size_t N>
SmallVector(StaticVector<T, N>&&) -> SmallVector<T, N>;
template <typename T, std::size_t N>
inline void swap(SmallVector<T, N>& lhs, SmallVector<T, N>& rhs) {
lhs.swap(rhs);
}
} // namespace android::ftl
|