1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/*
* Copyright (C) 2021 The Android Open Source Project
* Android BPF library - public API
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include "MultiStateCounter.h"
namespace android {
namespace battery {
typedef MultiStateCounter<double> DoubleMultiStateCounter;
template <>
bool DoubleMultiStateCounter::delta(const double& previousValue, const double& newValue,
double* outValue) const {
*outValue = newValue - previousValue;
return *outValue >= 0;
}
template <>
void DoubleMultiStateCounter::add(double* value1, const double& value2, const uint64_t numerator,
const uint64_t denominator) const {
if (numerator != denominator) {
// The caller ensures that denominator != 0
*value1 += value2 * numerator / denominator;
} else {
*value1 += value2;
}
}
template <>
std::string DoubleMultiStateCounter::valueToString(const double& v) const {
return std::to_string(v);
}
class MultiStateCounterTest : public testing::Test {};
TEST_F(MultiStateCounterTest, constructor) {
DoubleMultiStateCounter testCounter(3, 0);
testCounter.updateValue(0, 0);
testCounter.setState(1, 0);
double delta = testCounter.updateValue(3.14, 3000);
EXPECT_DOUBLE_EQ(0, testCounter.getCount(0));
EXPECT_DOUBLE_EQ(3.14, testCounter.getCount(1));
EXPECT_DOUBLE_EQ(0, testCounter.getCount(2));
EXPECT_DOUBLE_EQ(3.14, delta);
}
TEST_F(MultiStateCounterTest, stateChange) {
DoubleMultiStateCounter testCounter(3, 0);
testCounter.updateValue(0, 0);
testCounter.setState(1, 0);
testCounter.setState(2, 1000);
testCounter.updateValue(6.0, 3000);
EXPECT_DOUBLE_EQ(0, testCounter.getCount(0));
EXPECT_DOUBLE_EQ(2.0, testCounter.getCount(1));
EXPECT_DOUBLE_EQ(4.0, testCounter.getCount(2));
}
TEST_F(MultiStateCounterTest, setEnabled) {
DoubleMultiStateCounter testCounter(3, 0);
testCounter.updateValue(0, 0);
testCounter.setState(1, 0);
testCounter.setEnabled(false, 1000);
testCounter.setState(2, 2000);
testCounter.updateValue(6.0, 3000);
// In state 1: accumulated 1000 before disabled, that's 6.0 * 1000/3000 = 2.0
// In state 2: 0, since it is still disabled
EXPECT_DOUBLE_EQ(0, testCounter.getCount(0));
EXPECT_DOUBLE_EQ(2.0, testCounter.getCount(1));
EXPECT_DOUBLE_EQ(0, testCounter.getCount(2));
// Should have no effect since the counter is disabled
testCounter.setState(0, 3500);
// Should have no effect since the counter is disabled
testCounter.updateValue(10.0, 4000);
EXPECT_DOUBLE_EQ(0, testCounter.getCount(0));
EXPECT_DOUBLE_EQ(2.0, testCounter.getCount(1));
EXPECT_DOUBLE_EQ(0, testCounter.getCount(2));
testCounter.setState(2, 4500);
// Enable the counter to partially accumulate deltas for the current state, 2
testCounter.setEnabled(true, 5000);
testCounter.setEnabled(false, 6000);
testCounter.setEnabled(true, 7000);
testCounter.updateValue(20.0, 8000);
// The delta is 10.0 over 5000-3000=2000.
// Counter has been enabled in state 2 for (6000-5000)+(8000-7000) = 2000,
// so its share is (20.0-10.0) * 2000/(8000-4000) = 5.0
EXPECT_DOUBLE_EQ(0, testCounter.getCount(0));
EXPECT_DOUBLE_EQ(2.0, testCounter.getCount(1));
EXPECT_DOUBLE_EQ(5.0, testCounter.getCount(2));
testCounter.reset();
testCounter.setState(0, 0);
testCounter.updateValue(0, 0);
testCounter.setState(1, 2000);
testCounter.setEnabled(false, 3000);
testCounter.updateValue(200, 5000);
// 200 over 5000 = 40 per second
// Counter was in state 0 from 0 to 2000, so 2 sec, so the count should be 40 * 2 = 80
// It stayed in state 1 from 2000 to 3000, at which point the counter was disabled,
// so the count for state 1 should be 40 * 1 = 40.
// The remaining 2 seconds from 3000 to 5000 don't count because the counter was disabled.
EXPECT_DOUBLE_EQ(80.0, testCounter.getCount(0));
EXPECT_DOUBLE_EQ(40.0, testCounter.getCount(1));
EXPECT_DOUBLE_EQ(0, testCounter.getCount(2));
}
TEST_F(MultiStateCounterTest, reset) {
DoubleMultiStateCounter testCounter(3, 0);
testCounter.updateValue(0, 0);
testCounter.setState(1, 0);
testCounter.updateValue(2.72, 3000);
testCounter.reset();
EXPECT_DOUBLE_EQ(0, testCounter.getCount(0));
EXPECT_DOUBLE_EQ(0, testCounter.getCount(1));
EXPECT_DOUBLE_EQ(0, testCounter.getCount(2));
// Assert that we can still continue accumulating after a reset
testCounter.updateValue(0, 4000);
testCounter.updateValue(3.14, 5000);
EXPECT_DOUBLE_EQ(0, testCounter.getCount(0));
EXPECT_DOUBLE_EQ(3.14, testCounter.getCount(1));
EXPECT_DOUBLE_EQ(0, testCounter.getCount(2));
}
TEST_F(MultiStateCounterTest, timeAdjustment_setState) {
DoubleMultiStateCounter testCounter(3, 0);
testCounter.updateValue(0, 0);
testCounter.setState(1, 0);
testCounter.setState(2, 2000);
// Time moves back
testCounter.setState(1, 1000);
testCounter.updateValue(6.0, 3000);
EXPECT_DOUBLE_EQ(0, testCounter.getCount(0));
// We were in state 1 from 0 to 2000, which was erased because the time moved back.
// Then from 1000 to 3000, so we expect the count to be 6 * (2000/3000)
EXPECT_DOUBLE_EQ(4.0, testCounter.getCount(1));
// No time was effectively accumulated for state 2, because the timestamp moved back
// while we were in state 2.
EXPECT_DOUBLE_EQ(0, testCounter.getCount(2));
}
TEST_F(MultiStateCounterTest, timeAdjustment_updateValue) {
DoubleMultiStateCounter testCounter(1, 0);
testCounter.updateValue(0, 0);
testCounter.setState(0, 0);
testCounter.updateValue(6.0, 2000);
// Time moves back. The delta over the negative interval from 2000 to 1000 is ignored
testCounter.updateValue(8.0, 1000);
double delta = testCounter.updateValue(11.0, 3000);
// The total accumulated count is:
// 6.0 // For the period 0-2000
// +(11.0-8.0) // For the period 1000-3000
EXPECT_DOUBLE_EQ(9.0, testCounter.getCount(0));
// 11.0-8.0
EXPECT_DOUBLE_EQ(3.0, delta);
}
TEST_F(MultiStateCounterTest, updateValue_nonmonotonic) {
DoubleMultiStateCounter testCounter(2, 0);
testCounter.updateValue(0, 0);
testCounter.setState(0, 0);
testCounter.updateValue(6.0, 2000);
// Value goes down. The negative delta from 6.0 to 4.0 is ignored
testCounter.updateValue(4.0, 3000);
// Value goes up again. The positive delta from 4.0 to 7.0 is accumulated.
double delta = testCounter.updateValue(7.0, 4000);
// The total accumulated count is:
// 6.0 // For the period 0-2000
// +(7.0-4.0) // For the period 3000-4000
EXPECT_DOUBLE_EQ(9.0, testCounter.getCount(0));
// 7.0-4.0
EXPECT_DOUBLE_EQ(3.0, delta);
}
TEST_F(MultiStateCounterTest, incrementValue) {
DoubleMultiStateCounter testCounter(2, 0);
testCounter.updateValue(0, 0);
testCounter.setState(0, 0);
testCounter.updateValue(6.0, 2000);
testCounter.setState(1, 3000);
testCounter.incrementValue(8.0, 6000);
// The total accumulated count is:
// 6.0 // For the period 0-2000
// +(8.0 * 0.25) // For the period 3000-4000
EXPECT_DOUBLE_EQ(8.0, testCounter.getCount(0));
// 0 // For the period 0-3000
// +(8.0 * 0.75) // For the period 3000-4000
EXPECT_DOUBLE_EQ(6.0, testCounter.getCount(1));
}
TEST_F(MultiStateCounterTest, addValue) {
DoubleMultiStateCounter testCounter(1, 0);
testCounter.updateValue(0, 0);
testCounter.setState(0, 0);
testCounter.updateValue(6.0, 2000);
testCounter.addValue(8.0);
EXPECT_DOUBLE_EQ(14.0, testCounter.getCount(0));
testCounter.setEnabled(false, 3000);
testCounter.addValue(888.0);
EXPECT_DOUBLE_EQ(14.0, testCounter.getCount(0));
}
TEST_F(MultiStateCounterTest, toString) {
DoubleMultiStateCounter testCounter(2, 0);
EXPECT_STREQ("[0: 0.000000, 1: 0.000000] currentState: none", testCounter.toString().c_str());
testCounter.updateValue(0, 0);
testCounter.setState(1, 0);
testCounter.setState(1, 2000);
EXPECT_STREQ("[0: 0.000000, 1: 0.000000 timeInStateSinceUpdate: 2000]"
" updated: 0 currentState: 1 stateChanged: 2000",
testCounter.toString().c_str());
testCounter.updateValue(3.14, 3000);
EXPECT_STREQ("[0: 0.000000, 1: 3.140000] updated: 3000 currentState: 1",
testCounter.toString().c_str());
}
} // namespace battery
} // namespace android
|