1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <bpf_timeinstate.h>
#include <sys/sysinfo.h>
#include <pthread.h>
#include <semaphore.h>
#include <numeric>
#include <unordered_map>
#include <vector>
#include <gtest/gtest.h>
#include <android-base/properties.h>
#include <android-base/unique_fd.h>
#include <bpf/BpfMap.h>
#include <cputimeinstate.h>
#include <cutils/android_filesystem_config.h>
#include <libbpf.h>
namespace android {
namespace bpf {
static constexpr uint64_t NSEC_PER_SEC = 1000000000;
static constexpr uint64_t NSEC_PER_YEAR = NSEC_PER_SEC * 60 * 60 * 24 * 365;
// Declare busy loop variable globally to prevent removal during optimization
static volatile long sum __attribute__((used)) = 1;
using std::vector;
class TimeInStateTest : public testing::Test {
protected:
TimeInStateTest() {};
void SetUp() {
if (!isTrackingUidTimesSupported() ||
!android::base::GetBoolProperty("sys.init.perf_lsm_hooks", false)) {
GTEST_SKIP();
}
}
};
TEST_F(TimeInStateTest, TotalTimeInState) {
auto times = getTotalCpuFreqTimes();
ASSERT_TRUE(times.has_value());
EXPECT_FALSE(times->empty());
}
TEST_F(TimeInStateTest, SingleUidTimeInState) {
auto times = getUidCpuFreqTimes(0);
ASSERT_TRUE(times.has_value());
EXPECT_FALSE(times->empty());
}
TEST_F(TimeInStateTest, SingleUidConcurrentTimes) {
auto concurrentTimes = getUidConcurrentTimes(0);
ASSERT_TRUE(concurrentTimes.has_value());
ASSERT_FALSE(concurrentTimes->active.empty());
ASSERT_FALSE(concurrentTimes->policy.empty());
uint64_t policyEntries = 0;
for (const auto &policyTimeVec : concurrentTimes->policy) policyEntries += policyTimeVec.size();
ASSERT_EQ(concurrentTimes->active.size(), policyEntries);
}
static void TestConcurrentTimesConsistent(const struct concurrent_time_t &concurrentTime) {
size_t maxPolicyCpus = 0;
for (const auto &vec : concurrentTime.policy) {
maxPolicyCpus = std::max(maxPolicyCpus, vec.size());
}
uint64_t policySum = 0;
for (size_t i = 0; i < maxPolicyCpus; ++i) {
for (const auto &vec : concurrentTime.policy) {
if (i < vec.size()) policySum += vec[i];
}
ASSERT_LE(concurrentTime.active[i], policySum);
policySum -= concurrentTime.active[i];
}
policySum = 0;
for (size_t i = 0; i < concurrentTime.active.size(); ++i) {
for (const auto &vec : concurrentTime.policy) {
if (i < vec.size()) policySum += vec[vec.size() - 1 - i];
}
auto activeSum = concurrentTime.active[concurrentTime.active.size() - 1 - i];
// This check is slightly flaky because we may read a map entry in the middle of an update
// when active times have been updated but policy times have not. This happens infrequently
// and can be distinguished from more serious bugs by re-running the test: if the underlying
// data itself is inconsistent, the test will fail every time.
ASSERT_LE(activeSum, policySum);
policySum -= activeSum;
}
}
static void TestUidTimesConsistent(const std::vector<std::vector<uint64_t>> &timeInState,
const struct concurrent_time_t &concurrentTime) {
ASSERT_NO_FATAL_FAILURE(TestConcurrentTimesConsistent(concurrentTime));
ASSERT_EQ(timeInState.size(), concurrentTime.policy.size());
uint64_t policySum = 0;
for (uint32_t i = 0; i < timeInState.size(); ++i) {
uint64_t tisSum =
std::accumulate(timeInState[i].begin(), timeInState[i].end(), (uint64_t)0);
uint64_t concurrentSum = std::accumulate(concurrentTime.policy[i].begin(),
concurrentTime.policy[i].end(), (uint64_t)0);
if (tisSum < concurrentSum)
ASSERT_LE(concurrentSum - tisSum, NSEC_PER_SEC);
else
ASSERT_LE(tisSum - concurrentSum, NSEC_PER_SEC);
policySum += concurrentSum;
}
uint64_t activeSum = std::accumulate(concurrentTime.active.begin(), concurrentTime.active.end(),
(uint64_t)0);
EXPECT_EQ(activeSum, policySum);
}
TEST_F(TimeInStateTest, SingleUidTimesConsistent) {
auto times = getUidCpuFreqTimes(0);
ASSERT_TRUE(times.has_value());
auto concurrentTimes = getUidConcurrentTimes(0);
ASSERT_TRUE(concurrentTimes.has_value());
ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(*times, *concurrentTimes));
}
TEST_F(TimeInStateTest, AllUidTimeInState) {
uint64_t zero = 0;
auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)};
for (const auto &map : maps) {
ASSERT_TRUE(map.has_value());
ASSERT_FALSE(map->empty());
vector<size_t> sizes;
auto firstEntry = map->begin()->second;
for (const auto &subEntry : firstEntry) sizes.emplace_back(subEntry.size());
for (const auto &vec : *map) {
ASSERT_EQ(vec.second.size(), sizes.size());
for (size_t i = 0; i < vec.second.size(); ++i) ASSERT_EQ(vec.second[i].size(), sizes[i]);
}
}
}
void TestCheckUpdate(const std::vector<std::vector<uint64_t>> &before,
const std::vector<std::vector<uint64_t>> &after) {
ASSERT_EQ(before.size(), after.size());
uint64_t sumBefore = 0, sumAfter = 0;
for (size_t i = 0; i < before.size(); ++i) {
ASSERT_EQ(before[i].size(), after[i].size());
for (size_t j = 0; j < before[i].size(); ++j) {
// Times should never decrease
ASSERT_LE(before[i][j], after[i][j]);
}
sumBefore += std::accumulate(before[i].begin(), before[i].end(), (uint64_t)0);
sumAfter += std::accumulate(after[i].begin(), after[i].end(), (uint64_t)0);
}
ASSERT_LE(sumBefore, sumAfter);
ASSERT_LE(sumAfter - sumBefore, NSEC_PER_SEC);
}
TEST_F(TimeInStateTest, AllUidUpdatedTimeInState) {
uint64_t lastUpdate = 0;
auto map1 = getUidsUpdatedCpuFreqTimes(&lastUpdate);
ASSERT_TRUE(map1.has_value());
ASSERT_FALSE(map1->empty());
ASSERT_NE(lastUpdate, (uint64_t)0);
uint64_t oldLastUpdate = lastUpdate;
// Sleep briefly to trigger a context switch, ensuring we see at least one update.
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 1000000;
nanosleep (&ts, NULL);
auto map2 = getUidsUpdatedCpuFreqTimes(&lastUpdate);
ASSERT_TRUE(map2.has_value());
ASSERT_FALSE(map2->empty());
ASSERT_NE(lastUpdate, oldLastUpdate);
bool someUidsExcluded = false;
for (const auto &[uid, v] : *map1) {
if (map2->find(uid) == map2->end()) {
someUidsExcluded = true;
break;
}
}
ASSERT_TRUE(someUidsExcluded);
for (const auto &[uid, newTimes] : *map2) {
ASSERT_NE(map1->find(uid), map1->end());
ASSERT_NO_FATAL_FAILURE(TestCheckUpdate((*map1)[uid], newTimes));
}
}
TEST_F(TimeInStateTest, TotalAndAllUidTimeInStateConsistent) {
auto allUid = getUidsCpuFreqTimes();
auto total = getTotalCpuFreqTimes();
ASSERT_TRUE(allUid.has_value() && total.has_value());
// Check the number of policies.
ASSERT_EQ(allUid->at(0).size(), total->size());
for (uint32_t policyIdx = 0; policyIdx < total->size(); ++policyIdx) {
std::vector<uint64_t> totalTimes = total->at(policyIdx);
uint32_t totalFreqsCount = totalTimes.size();
std::vector<uint64_t> allUidTimes(totalFreqsCount, 0);
for (auto const &[uid, uidTimes]: *allUid) {
if (uid == AID_SDK_SANDBOX) continue;
for (uint32_t freqIdx = 0; freqIdx < uidTimes[policyIdx].size(); ++freqIdx) {
allUidTimes[std::min(freqIdx, totalFreqsCount - 1)] += uidTimes[policyIdx][freqIdx];
}
}
for (uint32_t freqIdx = 0; freqIdx < totalFreqsCount; ++freqIdx) {
ASSERT_LE(allUidTimes[freqIdx], totalTimes[freqIdx]);
}
}
}
TEST_F(TimeInStateTest, SingleAndAllUidTimeInStateConsistent) {
uint64_t zero = 0;
auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)};
for (const auto &map : maps) {
ASSERT_TRUE(map.has_value());
ASSERT_FALSE(map->empty());
for (const auto &kv : *map) {
uint32_t uid = kv.first;
auto times1 = kv.second;
auto times2 = getUidCpuFreqTimes(uid);
ASSERT_TRUE(times2.has_value());
ASSERT_EQ(times1.size(), times2->size());
for (uint32_t i = 0; i < times1.size(); ++i) {
ASSERT_EQ(times1[i].size(), (*times2)[i].size());
for (uint32_t j = 0; j < times1[i].size(); ++j) {
ASSERT_LE((*times2)[i][j] - times1[i][j], NSEC_PER_SEC);
}
}
}
}
}
TEST_F(TimeInStateTest, AllUidConcurrentTimes) {
uint64_t zero = 0;
auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)};
for (const auto &map : maps) {
ASSERT_TRUE(map.has_value());
ASSERT_FALSE(map->empty());
auto firstEntry = map->begin()->second;
for (const auto &kv : *map) {
ASSERT_EQ(kv.second.active.size(), firstEntry.active.size());
ASSERT_EQ(kv.second.policy.size(), firstEntry.policy.size());
for (size_t i = 0; i < kv.second.policy.size(); ++i) {
ASSERT_EQ(kv.second.policy[i].size(), firstEntry.policy[i].size());
}
}
}
}
TEST_F(TimeInStateTest, AllUidUpdatedConcurrentTimes) {
uint64_t lastUpdate = 0;
auto map1 = getUidsUpdatedConcurrentTimes(&lastUpdate);
ASSERT_TRUE(map1.has_value());
ASSERT_FALSE(map1->empty());
ASSERT_NE(lastUpdate, (uint64_t)0);
// Sleep briefly to trigger a context switch, ensuring we see at least one update.
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 1000000;
nanosleep (&ts, NULL);
uint64_t oldLastUpdate = lastUpdate;
auto map2 = getUidsUpdatedConcurrentTimes(&lastUpdate);
ASSERT_TRUE(map2.has_value());
ASSERT_FALSE(map2->empty());
ASSERT_NE(lastUpdate, oldLastUpdate);
bool someUidsExcluded = false;
for (const auto &[uid, v] : *map1) {
if (map2->find(uid) == map2->end()) {
someUidsExcluded = true;
break;
}
}
ASSERT_TRUE(someUidsExcluded);
for (const auto &[uid, newTimes] : *map2) {
ASSERT_NE(map1->find(uid), map1->end());
ASSERT_NO_FATAL_FAILURE(TestCheckUpdate({(*map1)[uid].active},{newTimes.active}));
ASSERT_NO_FATAL_FAILURE(TestCheckUpdate((*map1)[uid].policy, newTimes.policy));
}
}
TEST_F(TimeInStateTest, SingleAndAllUidConcurrentTimesConsistent) {
uint64_t zero = 0;
auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)};
for (const auto &map : maps) {
ASSERT_TRUE(map.has_value());
for (const auto &kv : *map) {
uint32_t uid = kv.first;
auto times1 = kv.second;
auto times2 = getUidConcurrentTimes(uid);
ASSERT_TRUE(times2.has_value());
for (uint32_t i = 0; i < times1.active.size(); ++i) {
ASSERT_LE(times2->active[i] - times1.active[i], NSEC_PER_SEC);
}
for (uint32_t i = 0; i < times1.policy.size(); ++i) {
for (uint32_t j = 0; j < times1.policy[i].size(); ++j) {
ASSERT_LE(times2->policy[i][j] - times1.policy[i][j], NSEC_PER_SEC);
}
}
}
}
}
void TestCheckDelta(uint64_t before, uint64_t after) {
// Times should never decrease
ASSERT_LE(before, after);
// UID can't have run for more than ~1s on each CPU
ASSERT_LE(after - before, NSEC_PER_SEC * 2 * get_nprocs_conf());
}
TEST_F(TimeInStateTest, TotalTimeInStateMonotonic) {
auto before = getTotalCpuFreqTimes();
ASSERT_TRUE(before.has_value());
sleep(1);
auto after = getTotalCpuFreqTimes();
ASSERT_TRUE(after.has_value());
for (uint32_t policyIdx = 0; policyIdx < after->size(); ++policyIdx) {
auto timesBefore = before->at(policyIdx);
auto timesAfter = after->at(policyIdx);
for (uint32_t freqIdx = 0; freqIdx < timesAfter.size(); ++freqIdx) {
ASSERT_NO_FATAL_FAILURE(TestCheckDelta(timesBefore[freqIdx], timesAfter[freqIdx]));
}
}
}
TEST_F(TimeInStateTest, AllUidTimeInStateMonotonic) {
auto map1 = getUidsCpuFreqTimes();
ASSERT_TRUE(map1.has_value());
sleep(1);
auto map2 = getUidsCpuFreqTimes();
ASSERT_TRUE(map2.has_value());
for (const auto &kv : *map1) {
uint32_t uid = kv.first;
auto times = kv.second;
ASSERT_NE(map2->find(uid), map2->end());
for (uint32_t policy = 0; policy < times.size(); ++policy) {
for (uint32_t freqIdx = 0; freqIdx < times[policy].size(); ++freqIdx) {
auto before = times[policy][freqIdx];
auto after = (*map2)[uid][policy][freqIdx];
ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after));
}
}
}
}
TEST_F(TimeInStateTest, AllUidConcurrentTimesMonotonic) {
auto map1 = getUidsConcurrentTimes();
ASSERT_TRUE(map1.has_value());
ASSERT_FALSE(map1->empty());
sleep(1);
auto map2 = getUidsConcurrentTimes();
ASSERT_TRUE(map2.has_value());
ASSERT_FALSE(map2->empty());
for (const auto &kv : *map1) {
uint32_t uid = kv.first;
auto times = kv.second;
ASSERT_NE(map2->find(uid), map2->end());
for (uint32_t i = 0; i < times.active.size(); ++i) {
auto before = times.active[i];
auto after = (*map2)[uid].active[i];
ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after));
}
for (uint32_t policy = 0; policy < times.policy.size(); ++policy) {
for (uint32_t idx = 0; idx < times.policy[policy].size(); ++idx) {
auto before = times.policy[policy][idx];
auto after = (*map2)[uid].policy[policy][idx];
ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after));
}
}
}
}
TEST_F(TimeInStateTest, AllUidTimeInStateSanityCheck) {
uint64_t zero = 0;
auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)};
for (const auto &map : maps) {
ASSERT_TRUE(map.has_value());
bool foundLargeValue = false;
for (const auto &kv : *map) {
for (const auto &timeVec : kv.second) {
for (const auto &time : timeVec) {
ASSERT_LE(time, NSEC_PER_YEAR);
if (time > UINT32_MAX) foundLargeValue = true;
}
}
}
// UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using
// uint64_t as expected, we should have some times higher than that.
ASSERT_TRUE(foundLargeValue);
}
}
TEST_F(TimeInStateTest, AllUidConcurrentTimesSanityCheck) {
uint64_t zero = 0;
auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)};
for (const auto &concurrentMap : maps) {
ASSERT_TRUE(concurrentMap);
bool activeFoundLargeValue = false;
bool policyFoundLargeValue = false;
for (const auto &kv : *concurrentMap) {
for (const auto &time : kv.second.active) {
ASSERT_LE(time, NSEC_PER_YEAR);
if (time > UINT32_MAX) activeFoundLargeValue = true;
}
for (const auto &policyTimeVec : kv.second.policy) {
for (const auto &time : policyTimeVec) {
ASSERT_LE(time, NSEC_PER_YEAR);
if (time > UINT32_MAX) policyFoundLargeValue = true;
}
}
}
// UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using
// uint64_t as expected, we should have some times higher than that.
ASSERT_TRUE(activeFoundLargeValue);
ASSERT_TRUE(policyFoundLargeValue);
}
}
TEST_F(TimeInStateTest, AllUidConcurrentTimesFailsOnInvalidBucket) {
uint32_t uid = 0;
{
// Find an unused UID
auto map = getUidsConcurrentTimes();
ASSERT_TRUE(map.has_value());
ASSERT_FALSE(map->empty());
for (const auto &kv : *map) uid = std::max(uid, kv.first);
++uid;
}
android::base::unique_fd fd{
bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_concurrent_times_map")};
ASSERT_GE(fd, 0);
uint32_t nCpus = get_nprocs_conf();
uint32_t maxBucket = (nCpus - 1) / CPUS_PER_ENTRY;
time_key_t key = {.uid = uid, .bucket = maxBucket + 1};
std::vector<concurrent_val_t> vals(nCpus);
ASSERT_FALSE(writeToMapEntry(fd, &key, vals.data(), BPF_NOEXIST));
EXPECT_FALSE(getUidsConcurrentTimes().has_value());
ASSERT_FALSE(deleteMapEntry(fd, &key));
}
TEST_F(TimeInStateTest, AllUidTimesConsistent) {
auto tisMap = getUidsCpuFreqTimes();
ASSERT_TRUE(tisMap.has_value());
auto concurrentMap = getUidsConcurrentTimes();
ASSERT_TRUE(concurrentMap.has_value());
ASSERT_EQ(tisMap->size(), concurrentMap->size());
for (const auto &kv : *tisMap) {
uint32_t uid = kv.first;
auto times = kv.second;
ASSERT_NE(concurrentMap->find(uid), concurrentMap->end());
auto concurrentTimes = (*concurrentMap)[uid];
ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(times, concurrentTimes));
}
}
TEST_F(TimeInStateTest, RemoveUid) {
uint32_t uid = 0;
{
// Find an unused UID
auto times = getUidsCpuFreqTimes();
ASSERT_TRUE(times.has_value());
ASSERT_FALSE(times->empty());
for (const auto &kv : *times) uid = std::max(uid, kv.first);
++uid;
}
{
// Add a map entry for our fake UID by copying a real map entry
android::base::unique_fd fd{
bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_time_in_state_map")};
ASSERT_GE(fd, 0);
time_key_t k;
ASSERT_FALSE(getFirstMapKey(fd, &k));
std::vector<tis_val_t> vals(get_nprocs_conf());
ASSERT_FALSE(findMapEntry(fd, &k, vals.data()));
uint32_t copiedUid = k.uid;
k.uid = uid;
ASSERT_FALSE(writeToMapEntry(fd, &k, vals.data(), BPF_NOEXIST));
android::base::unique_fd fd2{
bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_concurrent_times_map")};
k.uid = copiedUid;
k.bucket = 0;
std::vector<concurrent_val_t> cvals(get_nprocs_conf());
ASSERT_FALSE(findMapEntry(fd2, &k, cvals.data()));
k.uid = uid;
ASSERT_FALSE(writeToMapEntry(fd2, &k, cvals.data(), BPF_NOEXIST));
}
auto times = getUidCpuFreqTimes(uid);
ASSERT_TRUE(times.has_value());
ASSERT_FALSE(times->empty());
auto concurrentTimes = getUidConcurrentTimes(0);
ASSERT_TRUE(concurrentTimes.has_value());
ASSERT_FALSE(concurrentTimes->active.empty());
ASSERT_FALSE(concurrentTimes->policy.empty());
uint64_t sum = 0;
for (size_t i = 0; i < times->size(); ++i) {
for (auto x : (*times)[i]) sum += x;
}
ASSERT_GT(sum, (uint64_t)0);
uint64_t activeSum = 0;
for (size_t i = 0; i < concurrentTimes->active.size(); ++i) {
activeSum += concurrentTimes->active[i];
}
ASSERT_GT(activeSum, (uint64_t)0);
ASSERT_TRUE(clearUidTimes(uid));
auto allTimes = getUidsCpuFreqTimes();
ASSERT_TRUE(allTimes.has_value());
ASSERT_FALSE(allTimes->empty());
ASSERT_EQ(allTimes->find(uid), allTimes->end());
auto allConcurrentTimes = getUidsConcurrentTimes();
ASSERT_TRUE(allConcurrentTimes.has_value());
ASSERT_FALSE(allConcurrentTimes->empty());
ASSERT_EQ(allConcurrentTimes->find(uid), allConcurrentTimes->end());
}
TEST_F(TimeInStateTest, GetCpuFreqs) {
auto freqs = getCpuFreqs();
ASSERT_TRUE(freqs.has_value());
auto times = getUidCpuFreqTimes(0);
ASSERT_TRUE(times.has_value());
ASSERT_EQ(freqs->size(), times->size());
for (size_t i = 0; i < freqs->size(); ++i) EXPECT_EQ((*freqs)[i].size(), (*times)[i].size());
}
uint64_t timeNanos() {
struct timespec spec;
clock_gettime(CLOCK_MONOTONIC, &spec);
return spec.tv_sec * 1000000000 + spec.tv_nsec;
}
// Keeps CPU busy with some number crunching
void useCpu() {
sum = 1;
for (int i = 1; i < 100000; i++) {
sum *= i;
}
}
sem_t pingsem, pongsem;
void *testThread(void *) {
for (int i = 0; i < 10; i++) {
sem_wait(&pingsem);
useCpu();
sem_post(&pongsem);
}
return nullptr;
}
TEST_F(TimeInStateTest, GetAggregatedTaskCpuFreqTimes) {
uint64_t startTimeNs = timeNanos();
sem_init(&pingsem, 0, 1);
sem_init(&pongsem, 0, 0);
pthread_t thread;
ASSERT_EQ(pthread_create(&thread, NULL, &testThread, NULL), 0);
// This process may have been running for some time, so when we start tracking
// CPU time, the very first switch may include the accumulated time.
// Yield the remainder of this timeslice to the newly created thread.
sem_wait(&pongsem);
sem_post(&pingsem);
pid_t tgid = getpid();
startTrackingProcessCpuTimes(tgid);
pid_t tid = pthread_gettid_np(thread);
startAggregatingTaskCpuTimes(tid, 42);
// Play ping-pong with the other thread to ensure that both threads get
// some CPU time.
for (int i = 0; i < 9; i++) {
sem_wait(&pongsem);
useCpu();
sem_post(&pingsem);
}
pthread_join(thread, NULL);
std::optional<std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>>> optionalMap =
getAggregatedTaskCpuFreqTimes(tgid, {0, 42});
ASSERT_TRUE(optionalMap);
std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>> map = *optionalMap;
ASSERT_EQ(map.size(), 2u);
uint64_t testDurationNs = timeNanos() - startTimeNs;
for (auto pair : map) {
uint16_t aggregationKey = pair.first;
ASSERT_TRUE(aggregationKey == 0 || aggregationKey == 42);
std::vector<std::vector<uint64_t>> timesInState = pair.second;
uint64_t totalCpuTime = 0;
for (size_t i = 0; i < timesInState.size(); i++) {
for (size_t j = 0; j < timesInState[i].size(); j++) {
totalCpuTime += timesInState[i][j];
}
}
ASSERT_GT(totalCpuTime, 0ul);
ASSERT_LE(totalCpuTime, testDurationNs);
}
}
void *forceSwitchWithUid(void *uidPtr) {
if (!uidPtr) return nullptr;
setuid(*(uint32_t *)uidPtr);
// Sleep briefly to trigger a context switch, ensuring we see at least one update.
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 1000000;
nanosleep(&ts, NULL);
return nullptr;
}
TEST_F(TimeInStateTest, SdkSandboxUid) {
// Find an unused app UID and its corresponding SDK sandbox uid.
uint32_t appUid = AID_APP_START, sandboxUid;
{
auto times = getUidsCpuFreqTimes();
ASSERT_TRUE(times.has_value());
ASSERT_FALSE(times->empty());
for (const auto &kv : *times) {
if (kv.first > AID_APP_END) break;
appUid = std::max(appUid, kv.first);
}
appUid++;
sandboxUid = appUid + (AID_SDK_SANDBOX_PROCESS_START - AID_APP_START);
}
// Create a thread to run with the fake sandbox uid.
pthread_t thread;
ASSERT_EQ(pthread_create(&thread, NULL, &forceSwitchWithUid, &sandboxUid), 0);
pthread_join(thread, NULL);
// Confirm we recorded stats for appUid and AID_SDK_SANDBOX but not sandboxUid
auto allTimes = getUidsCpuFreqTimes();
ASSERT_TRUE(allTimes.has_value());
ASSERT_FALSE(allTimes->empty());
ASSERT_NE(allTimes->find(appUid), allTimes->end());
ASSERT_NE(allTimes->find(AID_SDK_SANDBOX), allTimes->end());
ASSERT_EQ(allTimes->find(sandboxUid), allTimes->end());
auto allConcurrentTimes = getUidsConcurrentTimes();
ASSERT_TRUE(allConcurrentTimes.has_value());
ASSERT_FALSE(allConcurrentTimes->empty());
ASSERT_NE(allConcurrentTimes->find(appUid), allConcurrentTimes->end());
ASSERT_NE(allConcurrentTimes->find(AID_SDK_SANDBOX), allConcurrentTimes->end());
ASSERT_EQ(allConcurrentTimes->find(sandboxUid), allConcurrentTimes->end());
ASSERT_TRUE(clearUidTimes(appUid));
}
} // namespace bpf
} // namespace android
|