1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
|
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cmath>
#include <vector>
#include <ultrahdr/gainmapmath.h>
namespace android::ultrahdr {
static const std::vector<float> kPqOETF = [] {
std::vector<float> result;
for (int idx = 0; idx < kPqOETFNumEntries; idx++) {
float value = static_cast<float>(idx) / static_cast<float>(kPqOETFNumEntries - 1);
result.push_back(pqOetf(value));
}
return result;
}();
static const std::vector<float> kPqInvOETF = [] {
std::vector<float> result;
for (int idx = 0; idx < kPqInvOETFNumEntries; idx++) {
float value = static_cast<float>(idx) / static_cast<float>(kPqInvOETFNumEntries - 1);
result.push_back(pqInvOetf(value));
}
return result;
}();
static const std::vector<float> kHlgOETF = [] {
std::vector<float> result;
for (int idx = 0; idx < kHlgOETFNumEntries; idx++) {
float value = static_cast<float>(idx) / static_cast<float>(kHlgOETFNumEntries - 1);
result.push_back(hlgOetf(value));
}
return result;
}();
static const std::vector<float> kHlgInvOETF = [] {
std::vector<float> result;
for (int idx = 0; idx < kHlgInvOETFNumEntries; idx++) {
float value = static_cast<float>(idx) / static_cast<float>(kHlgInvOETFNumEntries - 1);
result.push_back(hlgInvOetf(value));
}
return result;
}();
static const std::vector<float> kSrgbInvOETF = [] {
std::vector<float> result;
for (int idx = 0; idx < kSrgbInvOETFNumEntries; idx++) {
float value = static_cast<float>(idx) / static_cast<float>(kSrgbInvOETFNumEntries - 1);
result.push_back(srgbInvOetf(value));
}
return result;
}();
// Use Shepard's method for inverse distance weighting. For more information:
// en.wikipedia.org/wiki/Inverse_distance_weighting#Shepard's_method
float ShepardsIDW::euclideanDistance(float x1, float x2, float y1, float y2) {
return sqrt(((y2 - y1) * (y2 - y1)) + (x2 - x1) * (x2 - x1));
}
void ShepardsIDW::fillShepardsIDW(float *weights, int incR, int incB) {
for (int y = 0; y < mMapScaleFactor; y++) {
for (int x = 0; x < mMapScaleFactor; x++) {
float pos_x = ((float)x) / mMapScaleFactor;
float pos_y = ((float)y) / mMapScaleFactor;
int curr_x = floor(pos_x);
int curr_y = floor(pos_y);
int next_x = curr_x + incR;
int next_y = curr_y + incB;
float e1_distance = euclideanDistance(pos_x, curr_x, pos_y, curr_y);
int index = y * mMapScaleFactor * 4 + x * 4;
if (e1_distance == 0) {
weights[index++] = 1.f;
weights[index++] = 0.f;
weights[index++] = 0.f;
weights[index++] = 0.f;
} else {
float e1_weight = 1.f / e1_distance;
float e2_distance = euclideanDistance(pos_x, curr_x, pos_y, next_y);
float e2_weight = 1.f / e2_distance;
float e3_distance = euclideanDistance(pos_x, next_x, pos_y, curr_y);
float e3_weight = 1.f / e3_distance;
float e4_distance = euclideanDistance(pos_x, next_x, pos_y, next_y);
float e4_weight = 1.f / e4_distance;
float total_weight = e1_weight + e2_weight + e3_weight + e4_weight;
weights[index++] = e1_weight / total_weight;
weights[index++] = e2_weight / total_weight;
weights[index++] = e3_weight / total_weight;
weights[index++] = e4_weight / total_weight;
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// sRGB transformations
static const float kMaxPixelFloat = 1.0f;
static float clampPixelFloat(float value) {
return (value < 0.0f) ? 0.0f : (value > kMaxPixelFloat) ? kMaxPixelFloat : value;
}
// See IEC 61966-2-1/Amd 1:2003, Equation F.7.
static const float kSrgbR = 0.2126f, kSrgbG = 0.7152f, kSrgbB = 0.0722f;
float srgbLuminance(Color e) {
return kSrgbR * e.r + kSrgbG * e.g + kSrgbB * e.b;
}
// See ITU-R BT.709-6, Section 3.
// Uses the same coefficients for deriving luma signal as
// IEC 61966-2-1/Amd 1:2003 states for luminance, so we reuse the luminance
// function above.
static const float kSrgbCb = 1.8556f, kSrgbCr = 1.5748f;
Color srgbRgbToYuv(Color e_gamma) {
float y_gamma = srgbLuminance(e_gamma);
return {{{ y_gamma,
(e_gamma.b - y_gamma) / kSrgbCb,
(e_gamma.r - y_gamma) / kSrgbCr }}};
}
// See ITU-R BT.709-6, Section 3.
// Same derivation to BT.2100's YUV->RGB, below. Similar to srgbRgbToYuv, we
// can reuse the luminance coefficients since they are the same.
static const float kSrgbGCb = kSrgbB * kSrgbCb / kSrgbG;
static const float kSrgbGCr = kSrgbR * kSrgbCr / kSrgbG;
Color srgbYuvToRgb(Color e_gamma) {
return {{{ clampPixelFloat(e_gamma.y + kSrgbCr * e_gamma.v),
clampPixelFloat(e_gamma.y - kSrgbGCb * e_gamma.u - kSrgbGCr * e_gamma.v),
clampPixelFloat(e_gamma.y + kSrgbCb * e_gamma.u) }}};
}
// See IEC 61966-2-1/Amd 1:2003, Equations F.5 and F.6.
float srgbInvOetf(float e_gamma) {
if (e_gamma <= 0.04045f) {
return e_gamma / 12.92f;
} else {
return pow((e_gamma + 0.055f) / 1.055f, 2.4);
}
}
Color srgbInvOetf(Color e_gamma) {
return {{{ srgbInvOetf(e_gamma.r),
srgbInvOetf(e_gamma.g),
srgbInvOetf(e_gamma.b) }}};
}
// See IEC 61966-2-1, Equations F.5 and F.6.
float srgbInvOetfLUT(float e_gamma) {
uint32_t value = static_cast<uint32_t>(e_gamma * (kSrgbInvOETFNumEntries - 1) + 0.5);
//TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kSrgbInvOETFNumEntries - 1);
return kSrgbInvOETF[value];
}
Color srgbInvOetfLUT(Color e_gamma) {
return {{{ srgbInvOetfLUT(e_gamma.r),
srgbInvOetfLUT(e_gamma.g),
srgbInvOetfLUT(e_gamma.b) }}};
}
////////////////////////////////////////////////////////////////////////////////
// Display-P3 transformations
// See SMPTE EG 432-1, Equation 7-8.
static const float kP3R = 0.20949f, kP3G = 0.72160f, kP3B = 0.06891f;
float p3Luminance(Color e) {
return kP3R * e.r + kP3G * e.g + kP3B * e.b;
}
// See ITU-R BT.601-7, Sections 2.5.1 and 2.5.2.
// Unfortunately, calculation of luma signal differs from calculation of
// luminance for Display-P3, so we can't reuse p3Luminance here.
static const float kP3YR = 0.299f, kP3YG = 0.587f, kP3YB = 0.114f;
static const float kP3Cb = 1.772f, kP3Cr = 1.402f;
Color p3RgbToYuv(Color e_gamma) {
float y_gamma = kP3YR * e_gamma.r + kP3YG * e_gamma.g + kP3YB * e_gamma.b;
return {{{ y_gamma,
(e_gamma.b - y_gamma) / kP3Cb,
(e_gamma.r - y_gamma) / kP3Cr }}};
}
// See ITU-R BT.601-7, Sections 2.5.1 and 2.5.2.
// Same derivation to BT.2100's YUV->RGB, below. Similar to p3RgbToYuv, we must
// use luma signal coefficients rather than the luminance coefficients.
static const float kP3GCb = kP3YB * kP3Cb / kP3YG;
static const float kP3GCr = kP3YR * kP3Cr / kP3YG;
Color p3YuvToRgb(Color e_gamma) {
return {{{ clampPixelFloat(e_gamma.y + kP3Cr * e_gamma.v),
clampPixelFloat(e_gamma.y - kP3GCb * e_gamma.u - kP3GCr * e_gamma.v),
clampPixelFloat(e_gamma.y + kP3Cb * e_gamma.u) }}};
}
////////////////////////////////////////////////////////////////////////////////
// BT.2100 transformations - according to ITU-R BT.2100-2
// See ITU-R BT.2100-2, Table 5, HLG Reference OOTF
static const float kBt2100R = 0.2627f, kBt2100G = 0.6780f, kBt2100B = 0.0593f;
float bt2100Luminance(Color e) {
return kBt2100R * e.r + kBt2100G * e.g + kBt2100B * e.b;
}
// See ITU-R BT.2100-2, Table 6, Derivation of colour difference signals.
// BT.2100 uses the same coefficients for calculating luma signal and luminance,
// so we reuse the luminance function here.
static const float kBt2100Cb = 1.8814f, kBt2100Cr = 1.4746f;
Color bt2100RgbToYuv(Color e_gamma) {
float y_gamma = bt2100Luminance(e_gamma);
return {{{ y_gamma,
(e_gamma.b - y_gamma) / kBt2100Cb,
(e_gamma.r - y_gamma) / kBt2100Cr }}};
}
// See ITU-R BT.2100-2, Table 6, Derivation of colour difference signals.
//
// Similar to bt2100RgbToYuv above, we can reuse the luminance coefficients.
//
// Derived by inversing bt2100RgbToYuv. The derivation for R and B are pretty
// straight forward; we just invert the formulas for U and V above. But deriving
// the formula for G is a bit more complicated:
//
// Start with equation for luminance:
// Y = kBt2100R * R + kBt2100G * G + kBt2100B * B
// Solve for G:
// G = (Y - kBt2100R * R - kBt2100B * B) / kBt2100B
// Substitute equations for R and B in terms YUV:
// G = (Y - kBt2100R * (Y + kBt2100Cr * V) - kBt2100B * (Y + kBt2100Cb * U)) / kBt2100B
// Simplify:
// G = Y * ((1 - kBt2100R - kBt2100B) / kBt2100G)
// + U * (kBt2100B * kBt2100Cb / kBt2100G)
// + V * (kBt2100R * kBt2100Cr / kBt2100G)
//
// We then get the following coeficients for calculating G from YUV:
//
// Coef for Y = (1 - kBt2100R - kBt2100B) / kBt2100G = 1
// Coef for U = kBt2100B * kBt2100Cb / kBt2100G = kBt2100GCb = ~0.1645
// Coef for V = kBt2100R * kBt2100Cr / kBt2100G = kBt2100GCr = ~0.5713
static const float kBt2100GCb = kBt2100B * kBt2100Cb / kBt2100G;
static const float kBt2100GCr = kBt2100R * kBt2100Cr / kBt2100G;
Color bt2100YuvToRgb(Color e_gamma) {
return {{{ clampPixelFloat(e_gamma.y + kBt2100Cr * e_gamma.v),
clampPixelFloat(e_gamma.y - kBt2100GCb * e_gamma.u - kBt2100GCr * e_gamma.v),
clampPixelFloat(e_gamma.y + kBt2100Cb * e_gamma.u) }}};
}
// See ITU-R BT.2100-2, Table 5, HLG Reference OETF.
static const float kHlgA = 0.17883277f, kHlgB = 0.28466892f, kHlgC = 0.55991073;
float hlgOetf(float e) {
if (e <= 1.0f/12.0f) {
return sqrt(3.0f * e);
} else {
return kHlgA * log(12.0f * e - kHlgB) + kHlgC;
}
}
Color hlgOetf(Color e) {
return {{{ hlgOetf(e.r), hlgOetf(e.g), hlgOetf(e.b) }}};
}
float hlgOetfLUT(float e) {
uint32_t value = static_cast<uint32_t>(e * (kHlgOETFNumEntries - 1) + 0.5);
//TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kHlgOETFNumEntries - 1);
return kHlgOETF[value];
}
Color hlgOetfLUT(Color e) {
return {{{ hlgOetfLUT(e.r), hlgOetfLUT(e.g), hlgOetfLUT(e.b) }}};
}
// See ITU-R BT.2100-2, Table 5, HLG Reference EOTF.
float hlgInvOetf(float e_gamma) {
if (e_gamma <= 0.5f) {
return pow(e_gamma, 2.0f) / 3.0f;
} else {
return (exp((e_gamma - kHlgC) / kHlgA) + kHlgB) / 12.0f;
}
}
Color hlgInvOetf(Color e_gamma) {
return {{{ hlgInvOetf(e_gamma.r),
hlgInvOetf(e_gamma.g),
hlgInvOetf(e_gamma.b) }}};
}
float hlgInvOetfLUT(float e_gamma) {
uint32_t value = static_cast<uint32_t>(e_gamma * (kHlgInvOETFNumEntries - 1) + 0.5);
//TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kHlgInvOETFNumEntries - 1);
return kHlgInvOETF[value];
}
Color hlgInvOetfLUT(Color e_gamma) {
return {{{ hlgInvOetfLUT(e_gamma.r),
hlgInvOetfLUT(e_gamma.g),
hlgInvOetfLUT(e_gamma.b) }}};
}
// See ITU-R BT.2100-2, Table 4, Reference PQ OETF.
static const float kPqM1 = 2610.0f / 16384.0f, kPqM2 = 2523.0f / 4096.0f * 128.0f;
static const float kPqC1 = 3424.0f / 4096.0f, kPqC2 = 2413.0f / 4096.0f * 32.0f,
kPqC3 = 2392.0f / 4096.0f * 32.0f;
float pqOetf(float e) {
if (e <= 0.0f) return 0.0f;
return pow((kPqC1 + kPqC2 * pow(e, kPqM1)) / (1 + kPqC3 * pow(e, kPqM1)),
kPqM2);
}
Color pqOetf(Color e) {
return {{{ pqOetf(e.r), pqOetf(e.g), pqOetf(e.b) }}};
}
float pqOetfLUT(float e) {
uint32_t value = static_cast<uint32_t>(e * (kPqOETFNumEntries - 1) + 0.5);
//TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kPqOETFNumEntries - 1);
return kPqOETF[value];
}
Color pqOetfLUT(Color e) {
return {{{ pqOetfLUT(e.r), pqOetfLUT(e.g), pqOetfLUT(e.b) }}};
}
// Derived from the inverse of the Reference PQ OETF.
static const float kPqInvA = 128.0f, kPqInvB = 107.0f, kPqInvC = 2413.0f, kPqInvD = 2392.0f,
kPqInvE = 6.2773946361f, kPqInvF = 0.0126833f;
float pqInvOetf(float e_gamma) {
// This equation blows up if e_gamma is 0.0, and checking on <= 0.0 doesn't
// always catch 0.0. So, check on 0.0001, since anything this small will
// effectively be crushed to zero anyways.
if (e_gamma <= 0.0001f) return 0.0f;
return pow((kPqInvA * pow(e_gamma, kPqInvF) - kPqInvB)
/ (kPqInvC - kPqInvD * pow(e_gamma, kPqInvF)),
kPqInvE);
}
Color pqInvOetf(Color e_gamma) {
return {{{ pqInvOetf(e_gamma.r),
pqInvOetf(e_gamma.g),
pqInvOetf(e_gamma.b) }}};
}
float pqInvOetfLUT(float e_gamma) {
uint32_t value = static_cast<uint32_t>(e_gamma * (kPqInvOETFNumEntries - 1) + 0.5);
//TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kPqInvOETFNumEntries - 1);
return kPqInvOETF[value];
}
Color pqInvOetfLUT(Color e_gamma) {
return {{{ pqInvOetfLUT(e_gamma.r),
pqInvOetfLUT(e_gamma.g),
pqInvOetfLUT(e_gamma.b) }}};
}
////////////////////////////////////////////////////////////////////////////////
// Color conversions
Color bt709ToP3(Color e) {
return {{{ 0.82254f * e.r + 0.17755f * e.g + 0.00006f * e.b,
0.03312f * e.r + 0.96684f * e.g + -0.00001f * e.b,
0.01706f * e.r + 0.07240f * e.g + 0.91049f * e.b }}};
}
Color bt709ToBt2100(Color e) {
return {{{ 0.62740f * e.r + 0.32930f * e.g + 0.04332f * e.b,
0.06904f * e.r + 0.91958f * e.g + 0.01138f * e.b,
0.01636f * e.r + 0.08799f * e.g + 0.89555f * e.b }}};
}
Color p3ToBt709(Color e) {
return {{{ 1.22482f * e.r + -0.22490f * e.g + -0.00007f * e.b,
-0.04196f * e.r + 1.04199f * e.g + 0.00001f * e.b,
-0.01961f * e.r + -0.07865f * e.g + 1.09831f * e.b }}};
}
Color p3ToBt2100(Color e) {
return {{{ 0.75378f * e.r + 0.19862f * e.g + 0.04754f * e.b,
0.04576f * e.r + 0.94177f * e.g + 0.01250f * e.b,
-0.00121f * e.r + 0.01757f * e.g + 0.98359f * e.b }}};
}
Color bt2100ToBt709(Color e) {
return {{{ 1.66045f * e.r + -0.58764f * e.g + -0.07286f * e.b,
-0.12445f * e.r + 1.13282f * e.g + -0.00837f * e.b,
-0.01811f * e.r + -0.10057f * e.g + 1.11878f * e.b }}};
}
Color bt2100ToP3(Color e) {
return {{{ 1.34369f * e.r + -0.28223f * e.g + -0.06135f * e.b,
-0.06533f * e.r + 1.07580f * e.g + -0.01051f * e.b,
0.00283f * e.r + -0.01957f * e.g + 1.01679f * e.b
}}};
}
// TODO: confirm we always want to convert like this before calculating
// luminance.
ColorTransformFn getHdrConversionFn(ultrahdr_color_gamut sdr_gamut,
ultrahdr_color_gamut hdr_gamut) {
switch (sdr_gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
switch (hdr_gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
return identityConversion;
case ULTRAHDR_COLORGAMUT_P3:
return p3ToBt709;
case ULTRAHDR_COLORGAMUT_BT2100:
return bt2100ToBt709;
case ULTRAHDR_COLORGAMUT_UNSPECIFIED:
return nullptr;
}
break;
case ULTRAHDR_COLORGAMUT_P3:
switch (hdr_gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
return bt709ToP3;
case ULTRAHDR_COLORGAMUT_P3:
return identityConversion;
case ULTRAHDR_COLORGAMUT_BT2100:
return bt2100ToP3;
case ULTRAHDR_COLORGAMUT_UNSPECIFIED:
return nullptr;
}
break;
case ULTRAHDR_COLORGAMUT_BT2100:
switch (hdr_gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
return bt709ToBt2100;
case ULTRAHDR_COLORGAMUT_P3:
return p3ToBt2100;
case ULTRAHDR_COLORGAMUT_BT2100:
return identityConversion;
case ULTRAHDR_COLORGAMUT_UNSPECIFIED:
return nullptr;
}
break;
case ULTRAHDR_COLORGAMUT_UNSPECIFIED:
return nullptr;
}
}
// All of these conversions are derived from the respective input YUV->RGB conversion followed by
// the RGB->YUV for the receiving encoding. They are consistent with the RGB<->YUV functions in this
// file, given that we uses BT.709 encoding for sRGB and BT.601 encoding for Display-P3, to match
// DataSpace.
Color yuv709To601(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + 0.101579f * e_gamma.u + 0.196076f * e_gamma.v,
0.0f * e_gamma.y + 0.989854f * e_gamma.u + -0.110653f * e_gamma.v,
0.0f * e_gamma.y + -0.072453f * e_gamma.u + 0.983398f * e_gamma.v }}};
}
Color yuv709To2100(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + -0.016969f * e_gamma.u + 0.096312f * e_gamma.v,
0.0f * e_gamma.y + 0.995306f * e_gamma.u + -0.051192f * e_gamma.v,
0.0f * e_gamma.y + 0.011507f * e_gamma.u + 1.002637f * e_gamma.v }}};
}
Color yuv601To709(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + -0.118188f * e_gamma.u + -0.212685f * e_gamma.v,
0.0f * e_gamma.y + 1.018640f * e_gamma.u + 0.114618f * e_gamma.v,
0.0f * e_gamma.y + 0.075049f * e_gamma.u + 1.025327f * e_gamma.v }}};
}
Color yuv601To2100(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + -0.128245f * e_gamma.u + -0.115879f * e_gamma.v,
0.0f * e_gamma.y + 1.010016f * e_gamma.u + 0.061592f * e_gamma.v,
0.0f * e_gamma.y + 0.086969f * e_gamma.u + 1.029350f * e_gamma.v }}};
}
Color yuv2100To709(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + 0.018149f * e_gamma.u + -0.095132f * e_gamma.v,
0.0f * e_gamma.y + 1.004123f * e_gamma.u + 0.051267f * e_gamma.v,
0.0f * e_gamma.y + -0.011524f * e_gamma.u + 0.996782f * e_gamma.v }}};
}
Color yuv2100To601(Color e_gamma) {
return {{{ 1.0f * e_gamma.y + 0.117887f * e_gamma.u + 0.105521f * e_gamma.v,
0.0f * e_gamma.y + 0.995211f * e_gamma.u + -0.059549f * e_gamma.v,
0.0f * e_gamma.y + -0.084085f * e_gamma.u + 0.976518f * e_gamma.v }}};
}
void transformYuv420(jr_uncompressed_ptr image, size_t x_chroma, size_t y_chroma,
ColorTransformFn fn) {
Color yuv1 = getYuv420Pixel(image, x_chroma * 2, y_chroma * 2 );
Color yuv2 = getYuv420Pixel(image, x_chroma * 2 + 1, y_chroma * 2 );
Color yuv3 = getYuv420Pixel(image, x_chroma * 2, y_chroma * 2 + 1);
Color yuv4 = getYuv420Pixel(image, x_chroma * 2 + 1, y_chroma * 2 + 1);
yuv1 = fn(yuv1);
yuv2 = fn(yuv2);
yuv3 = fn(yuv3);
yuv4 = fn(yuv4);
Color new_uv = (yuv1 + yuv2 + yuv3 + yuv4) / 4.0f;
size_t pixel_y1_idx = x_chroma * 2 + y_chroma * 2 * image->luma_stride;
size_t pixel_y2_idx = (x_chroma * 2 + 1) + y_chroma * 2 * image->luma_stride;
size_t pixel_y3_idx = x_chroma * 2 + (y_chroma * 2 + 1) * image->luma_stride;
size_t pixel_y4_idx = (x_chroma * 2 + 1) + (y_chroma * 2 + 1) * image->luma_stride;
uint8_t& y1_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y1_idx];
uint8_t& y2_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y2_idx];
uint8_t& y3_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y3_idx];
uint8_t& y4_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y4_idx];
size_t pixel_count = image->chroma_stride * image->height / 2;
size_t pixel_uv_idx = x_chroma + y_chroma * (image->chroma_stride);
uint8_t& u_uint = reinterpret_cast<uint8_t*>(image->chroma_data)[pixel_uv_idx];
uint8_t& v_uint = reinterpret_cast<uint8_t*>(image->chroma_data)[pixel_count + pixel_uv_idx];
y1_uint = static_cast<uint8_t>(CLIP3((yuv1.y * 255.0f + 0.5f), 0, 255));
y2_uint = static_cast<uint8_t>(CLIP3((yuv2.y * 255.0f + 0.5f), 0, 255));
y3_uint = static_cast<uint8_t>(CLIP3((yuv3.y * 255.0f + 0.5f), 0, 255));
y4_uint = static_cast<uint8_t>(CLIP3((yuv4.y * 255.0f + 0.5f), 0, 255));
u_uint = static_cast<uint8_t>(CLIP3((new_uv.u * 255.0f + 128.0f + 0.5f), 0, 255));
v_uint = static_cast<uint8_t>(CLIP3((new_uv.v * 255.0f + 128.0f + 0.5f), 0, 255));
}
////////////////////////////////////////////////////////////////////////////////
// Gain map calculations
uint8_t encodeGain(float y_sdr, float y_hdr, ultrahdr_metadata_ptr metadata) {
return encodeGain(y_sdr, y_hdr, metadata,
log2(metadata->minContentBoost), log2(metadata->maxContentBoost));
}
uint8_t encodeGain(float y_sdr, float y_hdr, ultrahdr_metadata_ptr metadata,
float log2MinContentBoost, float log2MaxContentBoost) {
float gain = 1.0f;
if (y_sdr > 0.0f) {
gain = y_hdr / y_sdr;
}
if (gain < metadata->minContentBoost) gain = metadata->minContentBoost;
if (gain > metadata->maxContentBoost) gain = metadata->maxContentBoost;
return static_cast<uint8_t>((log2(gain) - log2MinContentBoost)
/ (log2MaxContentBoost - log2MinContentBoost)
* 255.0f);
}
Color applyGain(Color e, float gain, ultrahdr_metadata_ptr metadata) {
float logBoost = log2(metadata->minContentBoost) * (1.0f - gain)
+ log2(metadata->maxContentBoost) * gain;
float gainFactor = exp2(logBoost);
return e * gainFactor;
}
Color applyGain(Color e, float gain, ultrahdr_metadata_ptr metadata, float displayBoost) {
float logBoost = log2(metadata->minContentBoost) * (1.0f - gain)
+ log2(metadata->maxContentBoost) * gain;
float gainFactor = exp2(logBoost * displayBoost / metadata->maxContentBoost);
return e * gainFactor;
}
Color applyGainLUT(Color e, float gain, GainLUT& gainLUT) {
float gainFactor = gainLUT.getGainFactor(gain);
return e * gainFactor;
}
Color getYuv420Pixel(jr_uncompressed_ptr image, size_t x, size_t y) {
uint8_t* luma_data = reinterpret_cast<uint8_t*>(image->data);
size_t luma_stride = image->luma_stride;
uint8_t* chroma_data = reinterpret_cast<uint8_t*>(image->chroma_data);
size_t chroma_stride = image->chroma_stride;
size_t offset_cr = chroma_stride * (image->height / 2);
size_t pixel_y_idx = x + y * luma_stride;
size_t pixel_chroma_idx = x / 2 + (y / 2) * chroma_stride;
uint8_t y_uint = luma_data[pixel_y_idx];
uint8_t u_uint = chroma_data[pixel_chroma_idx];
uint8_t v_uint = chroma_data[offset_cr + pixel_chroma_idx];
// 128 bias for UV given we are using jpeglib; see:
// https://github.com/kornelski/libjpeg/blob/master/structure.doc
return {{{ static_cast<float>(y_uint) / 255.0f,
(static_cast<float>(u_uint) - 128.0f) / 255.0f,
(static_cast<float>(v_uint) - 128.0f) / 255.0f }}};
}
Color getP010Pixel(jr_uncompressed_ptr image, size_t x, size_t y) {
uint16_t* luma_data = reinterpret_cast<uint16_t*>(image->data);
size_t luma_stride = image->luma_stride == 0 ? image->width : image->luma_stride;
uint16_t* chroma_data = reinterpret_cast<uint16_t*>(image->chroma_data);
size_t chroma_stride = image->chroma_stride;
size_t pixel_y_idx = y * luma_stride + x;
size_t pixel_u_idx = (y >> 1) * chroma_stride + (x & ~0x1);
size_t pixel_v_idx = pixel_u_idx + 1;
uint16_t y_uint = luma_data[pixel_y_idx] >> 6;
uint16_t u_uint = chroma_data[pixel_u_idx] >> 6;
uint16_t v_uint = chroma_data[pixel_v_idx] >> 6;
// Conversions include taking narrow-range into account.
return {{{ (static_cast<float>(y_uint) - 64.0f) / 876.0f,
(static_cast<float>(u_uint) - 64.0f) / 896.0f - 0.5f,
(static_cast<float>(v_uint) - 64.0f) / 896.0f - 0.5f }}};
}
typedef Color (*getPixelFn)(jr_uncompressed_ptr, size_t, size_t);
static Color samplePixels(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y,
getPixelFn get_pixel_fn) {
Color e = {{{ 0.0f, 0.0f, 0.0f }}};
for (size_t dy = 0; dy < map_scale_factor; ++dy) {
for (size_t dx = 0; dx < map_scale_factor; ++dx) {
e += get_pixel_fn(image, x * map_scale_factor + dx, y * map_scale_factor + dy);
}
}
return e / static_cast<float>(map_scale_factor * map_scale_factor);
}
Color sampleYuv420(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getYuv420Pixel);
}
Color sampleP010(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getP010Pixel);
}
// TODO: do we need something more clever for filtering either the map or images
// to generate the map?
static size_t clamp(const size_t& val, const size_t& low, const size_t& high) {
return val < low ? low : (high < val ? high : val);
}
static float mapUintToFloat(uint8_t map_uint) {
return static_cast<float>(map_uint) / 255.0f;
}
static float pythDistance(float x_diff, float y_diff) {
return sqrt(pow(x_diff, 2.0f) + pow(y_diff, 2.0f));
}
// TODO: If map_scale_factor is guaranteed to be an integer, then remove the following.
float sampleMap(jr_uncompressed_ptr map, float map_scale_factor, size_t x, size_t y) {
float x_map = static_cast<float>(x) / map_scale_factor;
float y_map = static_cast<float>(y) / map_scale_factor;
size_t x_lower = static_cast<size_t>(floor(x_map));
size_t x_upper = x_lower + 1;
size_t y_lower = static_cast<size_t>(floor(y_map));
size_t y_upper = y_lower + 1;
x_lower = clamp(x_lower, 0, map->width - 1);
x_upper = clamp(x_upper, 0, map->width - 1);
y_lower = clamp(y_lower, 0, map->height - 1);
y_upper = clamp(y_upper, 0, map->height - 1);
// Use Shepard's method for inverse distance weighting. For more information:
// en.wikipedia.org/wiki/Inverse_distance_weighting#Shepard's_method
float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]);
float e1_dist = pythDistance(x_map - static_cast<float>(x_lower),
y_map - static_cast<float>(y_lower));
if (e1_dist == 0.0f) return e1;
float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]);
float e2_dist = pythDistance(x_map - static_cast<float>(x_lower),
y_map - static_cast<float>(y_upper));
if (e2_dist == 0.0f) return e2;
float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]);
float e3_dist = pythDistance(x_map - static_cast<float>(x_upper),
y_map - static_cast<float>(y_lower));
if (e3_dist == 0.0f) return e3;
float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]);
float e4_dist = pythDistance(x_map - static_cast<float>(x_upper),
y_map - static_cast<float>(y_upper));
if (e4_dist == 0.0f) return e2;
float e1_weight = 1.0f / e1_dist;
float e2_weight = 1.0f / e2_dist;
float e3_weight = 1.0f / e3_dist;
float e4_weight = 1.0f / e4_dist;
float total_weight = e1_weight + e2_weight + e3_weight + e4_weight;
return e1 * (e1_weight / total_weight)
+ e2 * (e2_weight / total_weight)
+ e3 * (e3_weight / total_weight)
+ e4 * (e4_weight / total_weight);
}
float sampleMap(jr_uncompressed_ptr map, size_t map_scale_factor, size_t x, size_t y,
ShepardsIDW& weightTables) {
// TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the
// following by computing log2(map_scale_factor) once and then using >> log2(map_scale_factor)
int x_lower = x / map_scale_factor;
int x_upper = x_lower + 1;
int y_lower = y / map_scale_factor;
int y_upper = y_lower + 1;
x_lower = std::min(x_lower, map->width - 1);
x_upper = std::min(x_upper, map->width - 1);
y_lower = std::min(y_lower, map->height - 1);
y_upper = std::min(y_upper, map->height - 1);
float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]);
float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]);
float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]);
float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]);
// TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the
// following by using & (map_scale_factor - 1)
int offset_x = x % map_scale_factor;
int offset_y = y % map_scale_factor;
float* weights = weightTables.mWeights;
if (x_lower == x_upper && y_lower == y_upper) weights = weightTables.mWeightsC;
else if (x_lower == x_upper) weights = weightTables.mWeightsNR;
else if (y_lower == y_upper) weights = weightTables.mWeightsNB;
weights += offset_y * map_scale_factor * 4 + offset_x * 4;
return e1 * weights[0] + e2 * weights[1] + e3 * weights[2] + e4 * weights[3];
}
uint32_t colorToRgba1010102(Color e_gamma) {
return (0x3ff & static_cast<uint32_t>(e_gamma.r * 1023.0f))
| ((0x3ff & static_cast<uint32_t>(e_gamma.g * 1023.0f)) << 10)
| ((0x3ff & static_cast<uint32_t>(e_gamma.b * 1023.0f)) << 20)
| (0x3 << 30); // Set alpha to 1.0
}
uint64_t colorToRgbaF16(Color e_gamma) {
return (uint64_t) floatToHalf(e_gamma.r)
| (((uint64_t) floatToHalf(e_gamma.g)) << 16)
| (((uint64_t) floatToHalf(e_gamma.b)) << 32)
| (((uint64_t) floatToHalf(1.0f)) << 48);
}
} // namespace android::ultrahdr
|