1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
|
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef USE_BIG_ENDIAN
#define USE_BIG_ENDIAN true
#endif
#include <ultrahdr/icc.h>
#include <vector>
#include <utils/Log.h>
#ifndef FLT_MAX
#define FLT_MAX 0x1.fffffep127f
#endif
namespace android::ultrahdr {
static void Matrix3x3_apply(const Matrix3x3* m, float* x) {
float y0 = x[0] * m->vals[0][0] + x[1] * m->vals[0][1] + x[2] * m->vals[0][2];
float y1 = x[0] * m->vals[1][0] + x[1] * m->vals[1][1] + x[2] * m->vals[1][2];
float y2 = x[0] * m->vals[2][0] + x[1] * m->vals[2][1] + x[2] * m->vals[2][2];
x[0] = y0;
x[1] = y1;
x[2] = y2;
}
bool Matrix3x3_invert(const Matrix3x3* src, Matrix3x3* dst) {
double a00 = src->vals[0][0],
a01 = src->vals[1][0],
a02 = src->vals[2][0],
a10 = src->vals[0][1],
a11 = src->vals[1][1],
a12 = src->vals[2][1],
a20 = src->vals[0][2],
a21 = src->vals[1][2],
a22 = src->vals[2][2];
double b0 = a00*a11 - a01*a10,
b1 = a00*a12 - a02*a10,
b2 = a01*a12 - a02*a11,
b3 = a20,
b4 = a21,
b5 = a22;
double determinant = b0*b5
- b1*b4
+ b2*b3;
if (determinant == 0) {
return false;
}
double invdet = 1.0 / determinant;
if (invdet > +FLT_MAX || invdet < -FLT_MAX || !isfinitef_((float)invdet)) {
return false;
}
b0 *= invdet;
b1 *= invdet;
b2 *= invdet;
b3 *= invdet;
b4 *= invdet;
b5 *= invdet;
dst->vals[0][0] = (float)( a11*b5 - a12*b4 );
dst->vals[1][0] = (float)( a02*b4 - a01*b5 );
dst->vals[2][0] = (float)( + b2 );
dst->vals[0][1] = (float)( a12*b3 - a10*b5 );
dst->vals[1][1] = (float)( a00*b5 - a02*b3 );
dst->vals[2][1] = (float)( - b1 );
dst->vals[0][2] = (float)( a10*b4 - a11*b3 );
dst->vals[1][2] = (float)( a01*b3 - a00*b4 );
dst->vals[2][2] = (float)( + b0 );
for (int r = 0; r < 3; ++r)
for (int c = 0; c < 3; ++c) {
if (!isfinitef_(dst->vals[r][c])) {
return false;
}
}
return true;
}
static Matrix3x3 Matrix3x3_concat(const Matrix3x3* A, const Matrix3x3* B) {
Matrix3x3 m = { { { 0,0,0 },{ 0,0,0 },{ 0,0,0 } } };
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++) {
m.vals[r][c] = A->vals[r][0] * B->vals[0][c]
+ A->vals[r][1] * B->vals[1][c]
+ A->vals[r][2] * B->vals[2][c];
}
return m;
}
static void float_XYZD50_to_grid16_lab(const float* xyz_float, uint8_t* grid16_lab) {
float v[3] = {
xyz_float[0] / kD50_x,
xyz_float[1] / kD50_y,
xyz_float[2] / kD50_z,
};
for (size_t i = 0; i < 3; ++i) {
v[i] = v[i] > 0.008856f ? cbrtf(v[i]) : v[i] * 7.787f + (16 / 116.0f);
}
const float L = v[1] * 116.0f - 16.0f;
const float a = (v[0] - v[1]) * 500.0f;
const float b = (v[1] - v[2]) * 200.0f;
const float Lab_unorm[3] = {
L * (1 / 100.f),
(a + 128.0f) * (1 / 255.0f),
(b + 128.0f) * (1 / 255.0f),
};
// This will encode L=1 as 0xFFFF. This matches how skcms will interpret the
// table, but the spec appears to indicate that the value should be 0xFF00.
// https://crbug.com/skia/13807
for (size_t i = 0; i < 3; ++i) {
reinterpret_cast<uint16_t*>(grid16_lab)[i] =
Endian_SwapBE16(float_round_to_unorm16(Lab_unorm[i]));
}
}
std::string IccHelper::get_desc_string(const ultrahdr_transfer_function tf,
const ultrahdr_color_gamut gamut) {
std::string result;
switch (gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
result += "sRGB";
break;
case ULTRAHDR_COLORGAMUT_P3:
result += "Display P3";
break;
case ULTRAHDR_COLORGAMUT_BT2100:
result += "Rec2020";
break;
default:
result += "Unknown";
break;
}
result += " Gamut with ";
switch (tf) {
case ULTRAHDR_TF_SRGB:
result += "sRGB";
break;
case ULTRAHDR_TF_LINEAR:
result += "Linear";
break;
case ULTRAHDR_TF_PQ:
result += "PQ";
break;
case ULTRAHDR_TF_HLG:
result += "HLG";
break;
default:
result += "Unknown";
break;
}
result += " Transfer";
return result;
}
sp<DataStruct> IccHelper::write_text_tag(const char* text) {
uint32_t text_length = strlen(text);
uint32_t header[] = {
Endian_SwapBE32(kTAG_TextType), // Type signature
0, // Reserved
Endian_SwapBE32(1), // Number of records
Endian_SwapBE32(12), // Record size (must be 12)
Endian_SwapBE32(SetFourByteTag('e', 'n', 'U', 'S')), // English USA
Endian_SwapBE32(2 * text_length), // Length of string in bytes
Endian_SwapBE32(28), // Offset of string
};
uint32_t total_length = text_length * 2 + sizeof(header);
total_length = (((total_length + 2) >> 2) << 2); // 4 aligned
sp<DataStruct> dataStruct = sp<DataStruct>::make(total_length);
if (!dataStruct->write(header, sizeof(header))) {
ALOGE("write_text_tag(): error in writing data");
return dataStruct;
}
for (size_t i = 0; i < text_length; i++) {
// Convert ASCII to big-endian UTF-16.
dataStruct->write8(0);
dataStruct->write8(text[i]);
}
return dataStruct;
}
sp<DataStruct> IccHelper::write_xyz_tag(float x, float y, float z) {
uint32_t data[] = {
Endian_SwapBE32(kXYZ_PCSSpace),
0,
static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(x))),
static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(y))),
static_cast<uint32_t>(Endian_SwapBE32(float_round_to_fixed(z))),
};
sp<DataStruct> dataStruct = sp<DataStruct>::make(sizeof(data));
dataStruct->write(&data, sizeof(data));
return dataStruct;
}
sp<DataStruct> IccHelper::write_trc_tag(const int table_entries, const void* table_16) {
int total_length = 4 + 4 + 4 + table_entries * 2;
total_length = (((total_length + 2) >> 2) << 2); // 4 aligned
sp<DataStruct> dataStruct = sp<DataStruct>::make(total_length);
dataStruct->write32(Endian_SwapBE32(kTAG_CurveType)); // Type
dataStruct->write32(0); // Reserved
dataStruct->write32(Endian_SwapBE32(table_entries)); // Value count
for (size_t i = 0; i < table_entries; ++i) {
uint16_t value = reinterpret_cast<const uint16_t*>(table_16)[i];
dataStruct->write16(value);
}
return dataStruct;
}
sp<DataStruct> IccHelper::write_trc_tag(const TransferFunction& fn) {
if (fn.a == 1.f && fn.b == 0.f && fn.c == 0.f
&& fn.d == 0.f && fn.e == 0.f && fn.f == 0.f) {
int total_length = 16;
sp<DataStruct> dataStruct = new DataStruct(total_length);
dataStruct->write32(Endian_SwapBE32(kTAG_ParaCurveType)); // Type
dataStruct->write32(0); // Reserved
dataStruct->write32(Endian_SwapBE16(kExponential_ParaCurveType));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.g)));
return dataStruct;
}
int total_length = 40;
sp<DataStruct> dataStruct = new DataStruct(total_length);
dataStruct->write32(Endian_SwapBE32(kTAG_ParaCurveType)); // Type
dataStruct->write32(0); // Reserved
dataStruct->write32(Endian_SwapBE16(kGABCDEF_ParaCurveType));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.g)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.a)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.b)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.c)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.d)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.e)));
dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.f)));
return dataStruct;
}
float IccHelper::compute_tone_map_gain(const ultrahdr_transfer_function tf, float L) {
if (L <= 0.f) {
return 1.f;
}
if (tf == ULTRAHDR_TF_PQ) {
// The PQ transfer function will map to the range [0, 1]. Linearly scale
// it up to the range [0, 10,000/203]. We will then tone map that back
// down to [0, 1].
constexpr float kInputMaxLuminance = 10000 / 203.f;
constexpr float kOutputMaxLuminance = 1.0;
L *= kInputMaxLuminance;
// Compute the tone map gain which will tone map from 10,000/203 to 1.0.
constexpr float kToneMapA = kOutputMaxLuminance / (kInputMaxLuminance * kInputMaxLuminance);
constexpr float kToneMapB = 1.f / kOutputMaxLuminance;
return kInputMaxLuminance * (1.f + kToneMapA * L) / (1.f + kToneMapB * L);
}
if (tf == ULTRAHDR_TF_HLG) {
// Let Lw be the brightness of the display in nits.
constexpr float Lw = 203.f;
const float gamma = 1.2f + 0.42f * std::log(Lw / 1000.f) / std::log(10.f);
return std::pow(L, gamma - 1.f);
}
return 1.f;
}
sp<DataStruct> IccHelper::write_cicp_tag(uint32_t color_primaries,
uint32_t transfer_characteristics) {
int total_length = 12; // 4 + 4 + 1 + 1 + 1 + 1
sp<DataStruct> dataStruct = sp<DataStruct>::make(total_length);
dataStruct->write32(Endian_SwapBE32(kTAG_cicp)); // Type signature
dataStruct->write32(0); // Reserved
dataStruct->write8(color_primaries); // Color primaries
dataStruct->write8(transfer_characteristics); // Transfer characteristics
dataStruct->write8(0); // RGB matrix
dataStruct->write8(1); // Full range
return dataStruct;
}
void IccHelper::compute_lut_entry(const Matrix3x3& src_to_XYZD50, float rgb[3]) {
// Compute the matrices to convert from source to Rec2020, and from Rec2020 to XYZD50.
Matrix3x3 src_to_rec2020;
const Matrix3x3 rec2020_to_XYZD50 = kRec2020;
{
Matrix3x3 XYZD50_to_rec2020;
Matrix3x3_invert(&rec2020_to_XYZD50, &XYZD50_to_rec2020);
src_to_rec2020 = Matrix3x3_concat(&XYZD50_to_rec2020, &src_to_XYZD50);
}
// Convert the source signal to linear.
for (size_t i = 0; i < kNumChannels; ++i) {
rgb[i] = pqOetf(rgb[i]);
}
// Convert source gamut to Rec2020.
Matrix3x3_apply(&src_to_rec2020, rgb);
// Compute the luminance of the signal.
float L = bt2100Luminance({{{rgb[0], rgb[1], rgb[2]}}});
// Compute the tone map gain based on the luminance.
float tone_map_gain = compute_tone_map_gain(ULTRAHDR_TF_PQ, L);
// Apply the tone map gain.
for (size_t i = 0; i < kNumChannels; ++i) {
rgb[i] *= tone_map_gain;
}
// Convert from Rec2020-linear to XYZD50.
Matrix3x3_apply(&rec2020_to_XYZD50, rgb);
}
sp<DataStruct> IccHelper::write_clut(const uint8_t* grid_points, const uint8_t* grid_16) {
uint32_t value_count = kNumChannels;
for (uint32_t i = 0; i < kNumChannels; ++i) {
value_count *= grid_points[i];
}
int total_length = 20 + 2 * value_count;
total_length = (((total_length + 2) >> 2) << 2); // 4 aligned
sp<DataStruct> dataStruct = sp<DataStruct>::make(total_length);
for (size_t i = 0; i < 16; ++i) {
dataStruct->write8(i < kNumChannels ? grid_points[i] : 0); // Grid size
}
dataStruct->write8(2); // Grid byte width (always 16-bit)
dataStruct->write8(0); // Reserved
dataStruct->write8(0); // Reserved
dataStruct->write8(0); // Reserved
for (uint32_t i = 0; i < value_count; ++i) {
uint16_t value = reinterpret_cast<const uint16_t*>(grid_16)[i];
dataStruct->write16(value);
}
return dataStruct;
}
sp<DataStruct> IccHelper::write_mAB_or_mBA_tag(uint32_t type,
bool has_a_curves,
const uint8_t* grid_points,
const uint8_t* grid_16) {
const size_t b_curves_offset = 32;
sp<DataStruct> b_curves_data[kNumChannels];
sp<DataStruct> a_curves_data[kNumChannels];
size_t clut_offset = 0;
sp<DataStruct> clut;
size_t a_curves_offset = 0;
// The "B" curve is required.
for (size_t i = 0; i < kNumChannels; ++i) {
b_curves_data[i] = write_trc_tag(kLinear_TransFun);
}
// The "A" curve and CLUT are optional.
if (has_a_curves) {
clut_offset = b_curves_offset;
for (size_t i = 0; i < kNumChannels; ++i) {
clut_offset += b_curves_data[i]->getLength();
}
clut = write_clut(grid_points, grid_16);
a_curves_offset = clut_offset + clut->getLength();
for (size_t i = 0; i < kNumChannels; ++i) {
a_curves_data[i] = write_trc_tag(kLinear_TransFun);
}
}
int total_length = b_curves_offset;
for (size_t i = 0; i < kNumChannels; ++i) {
total_length += b_curves_data[i]->getLength();
}
if (has_a_curves) {
total_length += clut->getLength();
for (size_t i = 0; i < kNumChannels; ++i) {
total_length += a_curves_data[i]->getLength();
}
}
sp<DataStruct> dataStruct = sp<DataStruct>::make(total_length);
dataStruct->write32(Endian_SwapBE32(type)); // Type signature
dataStruct->write32(0); // Reserved
dataStruct->write8(kNumChannels); // Input channels
dataStruct->write8(kNumChannels); // Output channels
dataStruct->write16(0); // Reserved
dataStruct->write32(Endian_SwapBE32(b_curves_offset)); // B curve offset
dataStruct->write32(Endian_SwapBE32(0)); // Matrix offset (ignored)
dataStruct->write32(Endian_SwapBE32(0)); // M curve offset (ignored)
dataStruct->write32(Endian_SwapBE32(clut_offset)); // CLUT offset
dataStruct->write32(Endian_SwapBE32(a_curves_offset)); // A curve offset
for (size_t i = 0; i < kNumChannels; ++i) {
if (dataStruct->write(b_curves_data[i]->getData(), b_curves_data[i]->getLength())) {
return dataStruct;
}
}
if (has_a_curves) {
dataStruct->write(clut->getData(), clut->getLength());
for (size_t i = 0; i < kNumChannels; ++i) {
dataStruct->write(a_curves_data[i]->getData(), a_curves_data[i]->getLength());
}
}
return dataStruct;
}
sp<DataStruct> IccHelper::writeIccProfile(ultrahdr_transfer_function tf,
ultrahdr_color_gamut gamut) {
ICCHeader header;
std::vector<std::pair<uint32_t, sp<DataStruct>>> tags;
// Compute profile description tag
std::string desc = get_desc_string(tf, gamut);
tags.emplace_back(kTAG_desc, write_text_tag(desc.c_str()));
Matrix3x3 toXYZD50;
switch (gamut) {
case ULTRAHDR_COLORGAMUT_BT709:
toXYZD50 = kSRGB;
break;
case ULTRAHDR_COLORGAMUT_P3:
toXYZD50 = kDisplayP3;
break;
case ULTRAHDR_COLORGAMUT_BT2100:
toXYZD50 = kRec2020;
break;
default:
// Should not fall here.
return nullptr;
}
// Compute primaries.
{
tags.emplace_back(kTAG_rXYZ,
write_xyz_tag(toXYZD50.vals[0][0], toXYZD50.vals[1][0], toXYZD50.vals[2][0]));
tags.emplace_back(kTAG_gXYZ,
write_xyz_tag(toXYZD50.vals[0][1], toXYZD50.vals[1][1], toXYZD50.vals[2][1]));
tags.emplace_back(kTAG_bXYZ,
write_xyz_tag(toXYZD50.vals[0][2], toXYZD50.vals[1][2], toXYZD50.vals[2][2]));
}
// Compute white point tag (must be D50)
tags.emplace_back(kTAG_wtpt, write_xyz_tag(kD50_x, kD50_y, kD50_z));
// Compute transfer curves.
if (tf != ULTRAHDR_TF_PQ) {
if (tf == ULTRAHDR_TF_HLG) {
std::vector<uint8_t> trc_table;
trc_table.resize(kTrcTableSize * 2);
for (uint32_t i = 0; i < kTrcTableSize; ++i) {
float x = i / (kTrcTableSize - 1.f);
float y = hlgOetf(x);
y *= compute_tone_map_gain(tf, y);
float_to_table16(y, &trc_table[2 * i]);
}
tags.emplace_back(kTAG_rTRC,
write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data())));
tags.emplace_back(kTAG_gTRC,
write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data())));
tags.emplace_back(kTAG_bTRC,
write_trc_tag(kTrcTableSize, reinterpret_cast<uint8_t*>(trc_table.data())));
} else {
tags.emplace_back(kTAG_rTRC, write_trc_tag(kSRGB_TransFun));
tags.emplace_back(kTAG_gTRC, write_trc_tag(kSRGB_TransFun));
tags.emplace_back(kTAG_bTRC, write_trc_tag(kSRGB_TransFun));
}
}
// Compute CICP.
if (tf == ULTRAHDR_TF_HLG || tf == ULTRAHDR_TF_PQ) {
// The CICP tag is present in ICC 4.4, so update the header's version.
header.version = Endian_SwapBE32(0x04400000);
uint32_t color_primaries = 0;
if (gamut == ULTRAHDR_COLORGAMUT_BT709) {
color_primaries = kCICPPrimariesSRGB;
} else if (gamut == ULTRAHDR_COLORGAMUT_P3) {
color_primaries = kCICPPrimariesP3;
}
uint32_t transfer_characteristics = 0;
if (tf == ULTRAHDR_TF_SRGB) {
transfer_characteristics = kCICPTrfnSRGB;
} else if (tf == ULTRAHDR_TF_LINEAR) {
transfer_characteristics = kCICPTrfnLinear;
} else if (tf == ULTRAHDR_TF_PQ) {
transfer_characteristics = kCICPTrfnPQ;
} else if (tf == ULTRAHDR_TF_HLG) {
transfer_characteristics = kCICPTrfnHLG;
}
tags.emplace_back(kTAG_cicp, write_cicp_tag(color_primaries, transfer_characteristics));
}
// Compute A2B0.
if (tf == ULTRAHDR_TF_PQ) {
std::vector<uint8_t> a2b_grid;
a2b_grid.resize(kGridSize * kGridSize * kGridSize * kNumChannels * 2);
size_t a2b_grid_index = 0;
for (uint32_t r_index = 0; r_index < kGridSize; ++r_index) {
for (uint32_t g_index = 0; g_index < kGridSize; ++g_index) {
for (uint32_t b_index = 0; b_index < kGridSize; ++b_index) {
float rgb[3] = {
r_index / (kGridSize - 1.f),
g_index / (kGridSize - 1.f),
b_index / (kGridSize - 1.f),
};
compute_lut_entry(toXYZD50, rgb);
float_XYZD50_to_grid16_lab(rgb, &a2b_grid[a2b_grid_index]);
a2b_grid_index += 6;
}
}
}
const uint8_t* grid_16 = reinterpret_cast<const uint8_t*>(a2b_grid.data());
uint8_t grid_points[kNumChannels];
for (size_t i = 0; i < kNumChannels; ++i) {
grid_points[i] = kGridSize;
}
auto a2b_data = write_mAB_or_mBA_tag(kTAG_mABType,
/* has_a_curves */ true,
grid_points,
grid_16);
tags.emplace_back(kTAG_A2B0, std::move(a2b_data));
}
// Compute B2A0.
if (tf == ULTRAHDR_TF_PQ) {
auto b2a_data = write_mAB_or_mBA_tag(kTAG_mBAType,
/* has_a_curves */ false,
/* grid_points */ nullptr,
/* grid_16 */ nullptr);
tags.emplace_back(kTAG_B2A0, std::move(b2a_data));
}
// Compute copyright tag
tags.emplace_back(kTAG_cprt, write_text_tag("Google Inc. 2022"));
// Compute the size of the profile.
size_t tag_data_size = 0;
for (const auto& tag : tags) {
tag_data_size += tag.second->getLength();
}
size_t tag_table_size = kICCTagTableEntrySize * tags.size();
size_t profile_size = kICCHeaderSize + tag_table_size + tag_data_size;
sp<DataStruct> dataStruct = sp<DataStruct>::make(profile_size + kICCIdentifierSize);
// Write identifier, chunk count, and chunk ID
if (!dataStruct->write(kICCIdentifier, sizeof(kICCIdentifier)) ||
!dataStruct->write8(1) || !dataStruct->write8(1)) {
ALOGE("writeIccProfile(): error in identifier");
return dataStruct;
}
// Write the header.
header.data_color_space = Endian_SwapBE32(Signature_RGB);
header.pcs = Endian_SwapBE32(tf == ULTRAHDR_TF_PQ ? Signature_Lab : Signature_XYZ);
header.size = Endian_SwapBE32(profile_size);
header.tag_count = Endian_SwapBE32(tags.size());
if (!dataStruct->write(&header, sizeof(header))) {
ALOGE("writeIccProfile(): error in header");
return dataStruct;
}
// Write the tag table. Track the offset and size of the previous tag to
// compute each tag's offset. An empty SkData indicates that the previous
// tag is to be reused.
uint32_t last_tag_offset = sizeof(header) + tag_table_size;
uint32_t last_tag_size = 0;
for (const auto& tag : tags) {
last_tag_offset = last_tag_offset + last_tag_size;
last_tag_size = tag.second->getLength();
uint32_t tag_table_entry[3] = {
Endian_SwapBE32(tag.first),
Endian_SwapBE32(last_tag_offset),
Endian_SwapBE32(last_tag_size),
};
if (!dataStruct->write(tag_table_entry, sizeof(tag_table_entry))) {
ALOGE("writeIccProfile(): error in writing tag table");
return dataStruct;
}
}
// Write the tags.
for (const auto& tag : tags) {
if (!dataStruct->write(tag.second->getData(), tag.second->getLength())) {
ALOGE("writeIccProfile(): error in writing tags");
return dataStruct;
}
}
return dataStruct;
}
bool IccHelper::tagsEqualToMatrix(const Matrix3x3& matrix,
const uint8_t* red_tag,
const uint8_t* green_tag,
const uint8_t* blue_tag) {
sp<DataStruct> red_tag_test = write_xyz_tag(matrix.vals[0][0], matrix.vals[1][0],
matrix.vals[2][0]);
sp<DataStruct> green_tag_test = write_xyz_tag(matrix.vals[0][1], matrix.vals[1][1],
matrix.vals[2][1]);
sp<DataStruct> blue_tag_test = write_xyz_tag(matrix.vals[0][2], matrix.vals[1][2],
matrix.vals[2][2]);
return memcmp(red_tag, red_tag_test->getData(), kColorantTagSize) == 0 &&
memcmp(green_tag, green_tag_test->getData(), kColorantTagSize) == 0 &&
memcmp(blue_tag, blue_tag_test->getData(), kColorantTagSize) == 0;
}
ultrahdr_color_gamut IccHelper::readIccColorGamut(void* icc_data, size_t icc_size) {
// Each tag table entry consists of 3 fields of 4 bytes each.
static const size_t kTagTableEntrySize = 12;
if (icc_data == nullptr || icc_size < sizeof(ICCHeader) + kICCIdentifierSize) {
return ULTRAHDR_COLORGAMUT_UNSPECIFIED;
}
if (memcmp(icc_data, kICCIdentifier, sizeof(kICCIdentifier)) != 0) {
return ULTRAHDR_COLORGAMUT_UNSPECIFIED;
}
uint8_t* icc_bytes = reinterpret_cast<uint8_t*>(icc_data) + kICCIdentifierSize;
ICCHeader* header = reinterpret_cast<ICCHeader*>(icc_bytes);
// Use 0 to indicate not found, since offsets are always relative to start
// of ICC data and therefore a tag offset of zero would never be valid.
size_t red_primary_offset = 0, green_primary_offset = 0, blue_primary_offset = 0;
size_t red_primary_size = 0, green_primary_size = 0, blue_primary_size = 0;
for (size_t tag_idx = 0; tag_idx < Endian_SwapBE32(header->tag_count); ++tag_idx) {
uint32_t* tag_entry_start = reinterpret_cast<uint32_t*>(
icc_bytes + sizeof(ICCHeader) + tag_idx * kTagTableEntrySize);
// first 4 bytes are the tag signature, next 4 bytes are the tag offset,
// last 4 bytes are the tag length in bytes.
if (red_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_rXYZ)) {
red_primary_offset = Endian_SwapBE32(*(tag_entry_start+1));
red_primary_size = Endian_SwapBE32(*(tag_entry_start+2));
} else if (green_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_gXYZ)) {
green_primary_offset = Endian_SwapBE32(*(tag_entry_start+1));
green_primary_size = Endian_SwapBE32(*(tag_entry_start+2));
} else if (blue_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_bXYZ)) {
blue_primary_offset = Endian_SwapBE32(*(tag_entry_start+1));
blue_primary_size = Endian_SwapBE32(*(tag_entry_start+2));
}
}
if (red_primary_offset == 0 || red_primary_size != kColorantTagSize ||
kICCIdentifierSize + red_primary_offset + red_primary_size > icc_size ||
green_primary_offset == 0 || green_primary_size != kColorantTagSize ||
kICCIdentifierSize + green_primary_offset + green_primary_size > icc_size ||
blue_primary_offset == 0 || blue_primary_size != kColorantTagSize ||
kICCIdentifierSize + blue_primary_offset + blue_primary_size > icc_size) {
return ULTRAHDR_COLORGAMUT_UNSPECIFIED;
}
uint8_t* red_tag = icc_bytes + red_primary_offset;
uint8_t* green_tag = icc_bytes + green_primary_offset;
uint8_t* blue_tag = icc_bytes + blue_primary_offset;
// Serialize tags as we do on encode and compare what we find to that to
// determine the gamut (since we don't have a need yet for full deserialize).
if (tagsEqualToMatrix(kSRGB, red_tag, green_tag, blue_tag)) {
return ULTRAHDR_COLORGAMUT_BT709;
} else if (tagsEqualToMatrix(kDisplayP3, red_tag, green_tag, blue_tag)) {
return ULTRAHDR_COLORGAMUT_P3;
} else if (tagsEqualToMatrix(kRec2020, red_tag, green_tag, blue_tag)) {
return ULTRAHDR_COLORGAMUT_BT2100;
}
// Didn't find a match to one of the profiles we write; indicate the gamut
// is unspecified since we don't understand it.
return ULTRAHDR_COLORGAMUT_UNSPECIFIED;
}
} // namespace android::ultrahdr
|