1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cstring>
#include <math.h>
#include <vibrator/ExternalVibrationUtils.h>
namespace android::os {
namespace {
static constexpr float HAPTIC_SCALE_VERY_LOW_RATIO = 2.0f / 3.0f;
static constexpr float HAPTIC_SCALE_LOW_RATIO = 3.0f / 4.0f;
static constexpr float HAPTIC_MAX_AMPLITUDE_FLOAT = 1.0f;
float getHapticScaleGamma(HapticLevel level) {
switch (level) {
case HapticLevel::VERY_LOW:
return 2.0f;
case HapticLevel::LOW:
return 1.5f;
case HapticLevel::HIGH:
return 0.5f;
case HapticLevel::VERY_HIGH:
return 0.25f;
default:
return 1.0f;
}
}
float getHapticMaxAmplitudeRatio(HapticLevel level) {
switch (level) {
case HapticLevel::VERY_LOW:
return HAPTIC_SCALE_VERY_LOW_RATIO;
case HapticLevel::LOW:
return HAPTIC_SCALE_LOW_RATIO;
case HapticLevel::NONE:
case HapticLevel::HIGH:
case HapticLevel::VERY_HIGH:
return 1.0f;
default:
return 0.0f;
}
}
void applyHapticScale(float* buffer, size_t length, HapticScale scale) {
if (scale.isScaleMute()) {
memset(buffer, 0, length * sizeof(float));
return;
}
if (scale.isScaleNone()) {
return;
}
HapticLevel hapticLevel = scale.getLevel();
float adaptiveScaleFactor = scale.getAdaptiveScaleFactor();
float gamma = getHapticScaleGamma(hapticLevel);
float maxAmplitudeRatio = getHapticMaxAmplitudeRatio(hapticLevel);
for (size_t i = 0; i < length; i++) {
if (hapticLevel != HapticLevel::NONE) {
float sign = buffer[i] >= 0 ? 1.0 : -1.0;
buffer[i] = powf(fabsf(buffer[i] / HAPTIC_MAX_AMPLITUDE_FLOAT), gamma)
* maxAmplitudeRatio * HAPTIC_MAX_AMPLITUDE_FLOAT * sign;
}
if (adaptiveScaleFactor != 1.0f) {
buffer[i] *= adaptiveScaleFactor;
}
}
}
void clipHapticData(float* buffer, size_t length, float limit) {
if (isnan(limit) || limit == 0) {
return;
}
limit = fabsf(limit);
for (size_t i = 0; i < length; i++) {
float sign = buffer[i] >= 0 ? 1.0 : -1.0;
if (fabsf(buffer[i]) > limit) {
buffer[i] = limit * sign;
}
}
}
} // namespace
bool isValidHapticScale(HapticScale scale) {
switch (scale.getLevel()) {
case HapticLevel::MUTE:
case HapticLevel::VERY_LOW:
case HapticLevel::LOW:
case HapticLevel::NONE:
case HapticLevel::HIGH:
case HapticLevel::VERY_HIGH:
return true;
}
return false;
}
void scaleHapticData(float* buffer, size_t length, HapticScale scale, float limit) {
if (isValidHapticScale(scale)) {
applyHapticScale(buffer, length, scale);
}
clipHapticData(buffer, length, limit);
}
} // namespace android::os
|