1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "LatencyAggregator"
#include "LatencyAggregator.h"
#include <inttypes.h>
#include <android-base/stringprintf.h>
#include <input/Input.h>
#include <log/log.h>
#include <server_configurable_flags/get_flags.h>
using android::base::StringPrintf;
using dist_proc::aggregation::KllQuantile;
using std::chrono_literals::operator""ms;
// Convert the provided nanoseconds into hundreds of microseconds.
// Use hundreds of microseconds (as opposed to microseconds) to preserve space.
static inline int64_t ns2hus(nsecs_t nanos) {
return ns2us(nanos) / 100;
}
// The maximum number of events that we will store in the statistics. Any events that we will
// receive after we have reached this number will be ignored. We could also implement this by
// checking the actual size of the current data and making sure that we do not go over. However,
// the serialization process of sketches is too heavy (1 ms for all 14 sketches), and would be too
// much to do (even if infrequently).
// The value here has been determined empirically.
static constexpr size_t MAX_EVENTS_FOR_STATISTICS = 20000;
// Category (=namespace) name for the input settings that are applied at boot time
static const char* INPUT_NATIVE_BOOT = "input_native_boot";
// Feature flag name for the threshold of end-to-end touch latency that would trigger
// SlowEventReported atom to be pushed
static const char* SLOW_EVENT_MIN_REPORTING_LATENCY_MILLIS =
"slow_event_min_reporting_latency_millis";
// Feature flag name for the minimum delay before reporting a slow event after having just reported
// a slow event. This helps limit the amount of data sent to the server
static const char* SLOW_EVENT_MIN_REPORTING_INTERVAL_MILLIS =
"slow_event_min_reporting_interval_millis";
// If an event has end-to-end latency > 200 ms, it will get reported as a slow event.
std::chrono::milliseconds DEFAULT_SLOW_EVENT_MIN_REPORTING_LATENCY = 200ms;
// If we receive two slow events less than 1 min apart, we will only report 1 of them.
std::chrono::milliseconds DEFAULT_SLOW_EVENT_MIN_REPORTING_INTERVAL = 60000ms;
static std::chrono::milliseconds getSlowEventMinReportingLatency() {
std::string millis = server_configurable_flags::
GetServerConfigurableFlag(INPUT_NATIVE_BOOT, SLOW_EVENT_MIN_REPORTING_LATENCY_MILLIS,
std::to_string(
DEFAULT_SLOW_EVENT_MIN_REPORTING_LATENCY.count()));
return std::chrono::milliseconds(std::stoi(millis));
}
static std::chrono::milliseconds getSlowEventMinReportingInterval() {
std::string millis = server_configurable_flags::
GetServerConfigurableFlag(INPUT_NATIVE_BOOT, SLOW_EVENT_MIN_REPORTING_INTERVAL_MILLIS,
std::to_string(
DEFAULT_SLOW_EVENT_MIN_REPORTING_INTERVAL.count()));
return std::chrono::milliseconds(std::stoi(millis));
}
namespace android::inputdispatcher {
/**
* Same as android::util::BytesField, but doesn't store raw pointers, and therefore deletes its
* resources automatically.
*/
class SafeBytesField {
public:
explicit SafeBytesField(dist_proc::aggregation::KllQuantile& quantile) {
const zetasketch::android::AggregatorStateProto aggProto = quantile.SerializeToProto();
mBuffer.resize(aggProto.ByteSizeLong());
aggProto.SerializeToArray(mBuffer.data(), mBuffer.size());
}
android::util::BytesField getBytesField() {
return android::util::BytesField(mBuffer.data(), mBuffer.size());
}
private:
std::vector<char> mBuffer;
};
LatencyAggregator::LatencyAggregator() {
AStatsManager_setPullAtomCallback(android::util::INPUT_EVENT_LATENCY_SKETCH, nullptr,
LatencyAggregator::pullAtomCallback, this);
dist_proc::aggregation::KllQuantileOptions options;
options.set_inv_eps(100); // Request precision of 1.0%, instead of default 0.1%
for (size_t i = 0; i < SketchIndex::SIZE; i++) {
mDownSketches[i] = KllQuantile::Create(options);
mMoveSketches[i] = KllQuantile::Create(options);
}
}
LatencyAggregator::~LatencyAggregator() {
AStatsManager_clearPullAtomCallback(android::util::INPUT_EVENT_LATENCY_SKETCH);
}
AStatsManager_PullAtomCallbackReturn LatencyAggregator::pullAtomCallback(int32_t atomTag,
AStatsEventList* data,
void* cookie) {
LatencyAggregator* pAggregator = reinterpret_cast<LatencyAggregator*>(cookie);
if (pAggregator == nullptr) {
LOG_ALWAYS_FATAL("pAggregator is null!");
}
return pAggregator->pullData(data);
}
void LatencyAggregator::processTimeline(const InputEventTimeline& timeline) {
processStatistics(timeline);
processSlowEvent(timeline);
}
void LatencyAggregator::processStatistics(const InputEventTimeline& timeline) {
std::scoped_lock lock(mLock);
// Before we do any processing, check that we have not yet exceeded MAX_SIZE
if (mNumSketchEventsProcessed >= MAX_EVENTS_FOR_STATISTICS) {
return;
}
mNumSketchEventsProcessed++;
std::array<std::unique_ptr<KllQuantile>, SketchIndex::SIZE>& sketches =
timeline.isDown ? mDownSketches : mMoveSketches;
// Process common ones first
const nsecs_t eventToRead = timeline.readTime - timeline.eventTime;
sketches[SketchIndex::EVENT_TO_READ]->Add(ns2hus(eventToRead));
// Now process per-connection ones
for (const auto& [connectionToken, connectionTimeline] : timeline.connectionTimelines) {
if (!connectionTimeline.isComplete()) {
continue;
}
const nsecs_t readToDeliver = connectionTimeline.deliveryTime - timeline.readTime;
const nsecs_t deliverToConsume =
connectionTimeline.consumeTime - connectionTimeline.deliveryTime;
const nsecs_t consumeToFinish =
connectionTimeline.finishTime - connectionTimeline.consumeTime;
const nsecs_t gpuCompletedTime =
connectionTimeline.graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME];
const nsecs_t presentTime =
connectionTimeline.graphicsTimeline[GraphicsTimeline::PRESENT_TIME];
const nsecs_t consumeToGpuComplete = gpuCompletedTime - connectionTimeline.consumeTime;
const nsecs_t gpuCompleteToPresent = presentTime - gpuCompletedTime;
const nsecs_t endToEnd = presentTime - timeline.eventTime;
sketches[SketchIndex::READ_TO_DELIVER]->Add(ns2hus(readToDeliver));
sketches[SketchIndex::DELIVER_TO_CONSUME]->Add(ns2hus(deliverToConsume));
sketches[SketchIndex::CONSUME_TO_FINISH]->Add(ns2hus(consumeToFinish));
sketches[SketchIndex::CONSUME_TO_GPU_COMPLETE]->Add(ns2hus(consumeToGpuComplete));
sketches[SketchIndex::GPU_COMPLETE_TO_PRESENT]->Add(ns2hus(gpuCompleteToPresent));
sketches[SketchIndex::END_TO_END]->Add(ns2hus(endToEnd));
}
}
AStatsManager_PullAtomCallbackReturn LatencyAggregator::pullData(AStatsEventList* data) {
std::scoped_lock lock(mLock);
std::array<std::unique_ptr<SafeBytesField>, SketchIndex::SIZE> serializedDownData;
std::array<std::unique_ptr<SafeBytesField>, SketchIndex::SIZE> serializedMoveData;
for (size_t i = 0; i < SketchIndex::SIZE; i++) {
serializedDownData[i] = std::make_unique<SafeBytesField>(*mDownSketches[i]);
serializedMoveData[i] = std::make_unique<SafeBytesField>(*mMoveSketches[i]);
}
android::util::
addAStatsEvent(data, android::util::INPUT_EVENT_LATENCY_SKETCH,
// DOWN sketches
serializedDownData[SketchIndex::EVENT_TO_READ]->getBytesField(),
serializedDownData[SketchIndex::READ_TO_DELIVER]->getBytesField(),
serializedDownData[SketchIndex::DELIVER_TO_CONSUME]->getBytesField(),
serializedDownData[SketchIndex::CONSUME_TO_FINISH]->getBytesField(),
serializedDownData[SketchIndex::CONSUME_TO_GPU_COMPLETE]
->getBytesField(),
serializedDownData[SketchIndex::GPU_COMPLETE_TO_PRESENT]
->getBytesField(),
serializedDownData[SketchIndex::END_TO_END]->getBytesField(),
// MOVE sketches
serializedMoveData[SketchIndex::EVENT_TO_READ]->getBytesField(),
serializedMoveData[SketchIndex::READ_TO_DELIVER]->getBytesField(),
serializedMoveData[SketchIndex::DELIVER_TO_CONSUME]->getBytesField(),
serializedMoveData[SketchIndex::CONSUME_TO_FINISH]->getBytesField(),
serializedMoveData[SketchIndex::CONSUME_TO_GPU_COMPLETE]
->getBytesField(),
serializedMoveData[SketchIndex::GPU_COMPLETE_TO_PRESENT]
->getBytesField(),
serializedMoveData[SketchIndex::END_TO_END]->getBytesField());
for (size_t i = 0; i < SketchIndex::SIZE; i++) {
mDownSketches[i]->Reset();
mMoveSketches[i]->Reset();
}
// Start new aggregations
mNumSketchEventsProcessed = 0;
return AStatsManager_PULL_SUCCESS;
}
void LatencyAggregator::processSlowEvent(const InputEventTimeline& timeline) {
static const std::chrono::duration sSlowEventThreshold = getSlowEventMinReportingLatency();
static const std::chrono::duration sSlowEventReportingInterval =
getSlowEventMinReportingInterval();
for (const auto& [token, connectionTimeline] : timeline.connectionTimelines) {
if (!connectionTimeline.isComplete()) {
continue;
}
mNumEventsSinceLastSlowEventReport++;
const nsecs_t presentTime =
connectionTimeline.graphicsTimeline[GraphicsTimeline::PRESENT_TIME];
const std::chrono::nanoseconds endToEndLatency =
std::chrono::nanoseconds(presentTime - timeline.eventTime);
if (endToEndLatency < sSlowEventThreshold) {
continue;
}
// This is a slow event. Before we report it, check if we are reporting too often
const std::chrono::duration elapsedSinceLastReport =
std::chrono::nanoseconds(timeline.eventTime - mLastSlowEventTime);
if (elapsedSinceLastReport < sSlowEventReportingInterval) {
mNumSkippedSlowEvents++;
continue;
}
const nsecs_t eventToRead = timeline.readTime - timeline.eventTime;
const nsecs_t readToDeliver = connectionTimeline.deliveryTime - timeline.readTime;
const nsecs_t deliverToConsume =
connectionTimeline.consumeTime - connectionTimeline.deliveryTime;
const nsecs_t consumeToFinish =
connectionTimeline.finishTime - connectionTimeline.consumeTime;
const nsecs_t gpuCompletedTime =
connectionTimeline.graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME];
const nsecs_t consumeToGpuComplete = gpuCompletedTime - connectionTimeline.consumeTime;
const nsecs_t gpuCompleteToPresent = presentTime - gpuCompletedTime;
android::util::stats_write(android::util::SLOW_INPUT_EVENT_REPORTED, timeline.isDown,
static_cast<int32_t>(ns2us(eventToRead)),
static_cast<int32_t>(ns2us(readToDeliver)),
static_cast<int32_t>(ns2us(deliverToConsume)),
static_cast<int32_t>(ns2us(consumeToFinish)),
static_cast<int32_t>(ns2us(consumeToGpuComplete)),
static_cast<int32_t>(ns2us(gpuCompleteToPresent)),
static_cast<int32_t>(ns2us(endToEndLatency.count())),
static_cast<int32_t>(mNumEventsSinceLastSlowEventReport),
static_cast<int32_t>(mNumSkippedSlowEvents));
mNumEventsSinceLastSlowEventReport = 0;
mNumSkippedSlowEvents = 0;
mLastSlowEventTime = timeline.readTime;
}
}
std::string LatencyAggregator::dump(const char* prefix) const {
std::scoped_lock lock(mLock);
std::string sketchDump = StringPrintf("%s Sketches:\n", prefix);
for (size_t i = 0; i < SketchIndex::SIZE; i++) {
const int64_t numDown = mDownSketches[i]->num_values();
SafeBytesField downBytesField(*mDownSketches[i]);
const float downBytesKb = downBytesField.getBytesField().arg_length * 1E-3;
const int64_t numMove = mMoveSketches[i]->num_values();
SafeBytesField moveBytesField(*mMoveSketches[i]);
const float moveBytesKb = moveBytesField.getBytesField().arg_length * 1E-3;
sketchDump +=
StringPrintf("%s mDownSketches[%zu]->num_values = %" PRId64 " size = %.1fKB"
" mMoveSketches[%zu]->num_values = %" PRId64 " size = %.1fKB\n",
prefix, i, numDown, downBytesKb, i, numMove, moveBytesKb);
}
return StringPrintf("%sLatencyAggregator:\n", prefix) + sketchDump +
StringPrintf("%s mNumSketchEventsProcessed=%zu\n", prefix, mNumSketchEventsProcessed) +
StringPrintf("%s mLastSlowEventTime=%" PRId64 "\n", prefix, mLastSlowEventTime) +
StringPrintf("%s mNumEventsSinceLastSlowEventReport = %zu\n", prefix,
mNumEventsSinceLastSlowEventReport) +
StringPrintf("%s mNumSkippedSlowEvents = %zu\n", prefix, mNumSkippedSlowEvents);
}
} // namespace android::inputdispatcher
|