1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Macros.h"
#include "InputDevice.h"
#include <algorithm>
#include <android/sysprop/InputProperties.sysprop.h>
#include <ftl/flags.h>
#include "CursorInputMapper.h"
#include "ExternalStylusInputMapper.h"
#include "InputReaderContext.h"
#include "JoystickInputMapper.h"
#include "KeyboardInputMapper.h"
#include "MultiTouchInputMapper.h"
#include "PeripheralController.h"
#include "RotaryEncoderInputMapper.h"
#include "SensorInputMapper.h"
#include "SingleTouchInputMapper.h"
#include "SwitchInputMapper.h"
#include "TouchpadInputMapper.h"
#include "VibratorInputMapper.h"
namespace android {
InputDevice::InputDevice(InputReaderContext* context, int32_t id, int32_t generation,
const InputDeviceIdentifier& identifier)
: mContext(context),
mId(id),
mGeneration(generation),
mControllerNumber(0),
mIdentifier(identifier),
mClasses(0),
mSources(0),
mIsWaking(false),
mIsExternal(false),
mHasMic(false),
mDropUntilNextSync(false) {}
InputDevice::~InputDevice() {}
bool InputDevice::isEnabled() {
if (!hasEventHubDevices()) {
return false;
}
// An input device composed of sub devices can be individually enabled or disabled.
// If any of the sub device is enabled then the input device is considered as enabled.
bool enabled = false;
for_each_subdevice([&enabled](auto& context) { enabled |= context.isDeviceEnabled(); });
return enabled;
}
std::list<NotifyArgs> InputDevice::updateEnableState(nsecs_t when,
const InputReaderConfiguration& readerConfig,
bool forceEnable) {
bool enable = forceEnable;
if (!forceEnable) {
// If the device was explicitly disabled by the user, it would be present in the
// "disabledDevices" list. This device should be disabled.
enable = readerConfig.disabledDevices.find(mId) == readerConfig.disabledDevices.end();
// If a device is associated with a specific display but there is no
// associated DisplayViewport, don't enable the device.
if (enable && (mAssociatedDisplayPort || mAssociatedDisplayUniqueId) &&
!mAssociatedViewport) {
const std::string desc = mAssociatedDisplayPort
? "port " + std::to_string(*mAssociatedDisplayPort)
: "uniqueId " + *mAssociatedDisplayUniqueId;
ALOGW("Cannot enable input device %s because it is associated "
"with %s, but the corresponding viewport is not found",
getName().c_str(), desc.c_str());
enable = false;
}
}
std::list<NotifyArgs> out;
if (isEnabled() == enable) {
return out;
}
// When resetting some devices, the driver needs to be queried to ensure that a proper reset is
// performed. The querying must happen when the device is enabled, so we reset after enabling
// but before disabling the device. See MultiTouchMotionAccumulator::reset for more information.
if (enable) {
for_each_subdevice([](auto& context) { context.enableDevice(); });
out += reset(when);
} else {
out += reset(when);
for_each_subdevice([](auto& context) { context.disableDevice(); });
}
// Must change generation to flag this device as changed
bumpGeneration();
return out;
}
void InputDevice::dump(std::string& dump, const std::string& eventHubDevStr) {
InputDeviceInfo deviceInfo = getDeviceInfo();
dump += StringPrintf(INDENT "Device %d: %s\n", deviceInfo.getId(),
deviceInfo.getDisplayName().c_str());
dump += StringPrintf(INDENT "%s", eventHubDevStr.c_str());
dump += StringPrintf(INDENT2 "Generation: %d\n", mGeneration);
dump += StringPrintf(INDENT2 "IsExternal: %s\n", toString(mIsExternal));
dump += StringPrintf(INDENT2 "IsWaking: %s\n", toString(mIsWaking));
dump += StringPrintf(INDENT2 "AssociatedDisplayPort: ");
if (mAssociatedDisplayPort) {
dump += StringPrintf("%" PRIu8 "\n", *mAssociatedDisplayPort);
} else {
dump += "<none>\n";
}
dump += StringPrintf(INDENT2 "AssociatedDisplayUniqueId: ");
if (mAssociatedDisplayUniqueId) {
dump += StringPrintf("%s\n", mAssociatedDisplayUniqueId->c_str());
} else {
dump += "<none>\n";
}
dump += StringPrintf(INDENT2 "HasMic: %s\n", toString(mHasMic));
dump += StringPrintf(INDENT2 "Sources: %s\n",
inputEventSourceToString(deviceInfo.getSources()).c_str());
dump += StringPrintf(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType());
dump += StringPrintf(INDENT2 "ControllerNum: %d\n", deviceInfo.getControllerNumber());
const std::vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges();
if (!ranges.empty()) {
dump += INDENT2 "Motion Ranges:\n";
for (size_t i = 0; i < ranges.size(); i++) {
const InputDeviceInfo::MotionRange& range = ranges[i];
const char* label = InputEventLookup::getAxisLabel(range.axis);
char name[32];
if (label) {
strncpy(name, label, sizeof(name));
name[sizeof(name) - 1] = '\0';
} else {
snprintf(name, sizeof(name), "%d", range.axis);
}
dump += StringPrintf(INDENT3
"%s: source=%s, "
"min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f, resolution=%0.3f\n",
name, inputEventSourceToString(range.source).c_str(), range.min,
range.max, range.flat, range.fuzz, range.resolution);
}
}
for_each_mapper([&dump](InputMapper& mapper) { mapper.dump(dump); });
if (mController) {
mController->dump(dump);
}
}
void InputDevice::addEmptyEventHubDevice(int32_t eventHubId) {
if (mDevices.find(eventHubId) != mDevices.end()) {
return;
}
std::unique_ptr<InputDeviceContext> contextPtr(new InputDeviceContext(*this, eventHubId));
std::vector<std::unique_ptr<InputMapper>> mappers;
mDevices.insert({eventHubId, std::make_pair(std::move(contextPtr), std::move(mappers))});
}
[[nodiscard]] std::list<NotifyArgs> InputDevice::addEventHubDevice(
nsecs_t when, int32_t eventHubId, const InputReaderConfiguration& readerConfig) {
if (mDevices.find(eventHubId) != mDevices.end()) {
return {};
}
// Add an empty device configure and keep it enabled to allow mapper population with correct
// configuration/context,
// Note: we need to ensure device is kept enabled till mappers are configured
// TODO: b/281852638 refactor tests to remove this flag and reliance on the empty device
addEmptyEventHubDevice(eventHubId);
std::list<NotifyArgs> out = configureInternal(when, readerConfig, {}, /*forceEnable=*/true);
DevicePair& devicePair = mDevices[eventHubId];
devicePair.second = createMappers(*devicePair.first, readerConfig);
// Must change generation to flag this device as changed
bumpGeneration();
return out;
}
void InputDevice::removeEventHubDevice(int32_t eventHubId) {
if (mController != nullptr && mController->getEventHubId() == eventHubId) {
// Delete mController, since the corresponding eventhub device is going away
mController = nullptr;
}
mDevices.erase(eventHubId);
}
std::list<NotifyArgs> InputDevice::configure(nsecs_t when,
const InputReaderConfiguration& readerConfig,
ConfigurationChanges changes) {
return configureInternal(when, readerConfig, changes);
}
std::list<NotifyArgs> InputDevice::configureInternal(nsecs_t when,
const InputReaderConfiguration& readerConfig,
ConfigurationChanges changes,
bool forceEnable) {
std::list<NotifyArgs> out;
mSources = 0;
mClasses = ftl::Flags<InputDeviceClass>(0);
mControllerNumber = 0;
for_each_subdevice([this](InputDeviceContext& context) {
mClasses |= context.getDeviceClasses();
int32_t controllerNumber = context.getDeviceControllerNumber();
if (controllerNumber > 0) {
if (mControllerNumber && mControllerNumber != controllerNumber) {
ALOGW("InputDevice::configure(): composite device contains multiple unique "
"controller numbers");
}
mControllerNumber = controllerNumber;
}
});
mIsExternal = mClasses.test(InputDeviceClass::EXTERNAL);
mHasMic = mClasses.test(InputDeviceClass::MIC);
using Change = InputReaderConfiguration::Change;
if (!changes.any() || !isIgnored()) {
// Full configuration should happen the first time configure is called
// and when the device type is changed. Changing a device type can
// affect various other parameters so should result in a
// reconfiguration.
if (!changes.any() || changes.test(Change::DEVICE_TYPE)) {
mConfiguration.clear();
for_each_subdevice([this](InputDeviceContext& context) {
std::optional<PropertyMap> configuration =
getEventHub()->getConfiguration(context.getEventHubId());
if (configuration) {
mConfiguration.addAll(&(*configuration));
}
});
mAssociatedDeviceType =
getValueByKey(readerConfig.deviceTypeAssociations, mIdentifier.location);
mIsWaking = mConfiguration.getBool("device.wake").value_or(false);
mShouldSmoothScroll = mConfiguration.getBool("device.viewBehavior_smoothScroll");
}
if (!changes.any() || changes.test(Change::DEVICE_ALIAS)) {
if (!(mClasses.test(InputDeviceClass::VIRTUAL))) {
std::string alias = mContext->getPolicy()->getDeviceAlias(mIdentifier);
if (mAlias != alias) {
mAlias = alias;
bumpGeneration();
}
}
}
if (!changes.any() || changes.test(Change::DISPLAY_INFO)) {
const auto oldAssociatedDisplayId = getAssociatedDisplayId();
// In most situations, no port or name will be specified.
mAssociatedDisplayPort = std::nullopt;
mAssociatedDisplayUniqueId = std::nullopt;
mAssociatedViewport = std::nullopt;
// Find the display port that corresponds to the current input port.
const std::string& inputPort = mIdentifier.location;
if (!inputPort.empty()) {
const std::unordered_map<std::string, uint8_t>& ports =
readerConfig.portAssociations;
const auto& displayPort = ports.find(inputPort);
if (displayPort != ports.end()) {
mAssociatedDisplayPort = std::make_optional(displayPort->second);
} else {
const std::unordered_map<std::string, std::string>& displayUniqueIds =
readerConfig.uniqueIdAssociations;
const auto& displayUniqueId = displayUniqueIds.find(inputPort);
if (displayUniqueId != displayUniqueIds.end()) {
mAssociatedDisplayUniqueId = displayUniqueId->second;
}
}
}
// If it is associated with a specific display, then find the corresponding viewport
// which will be used to enable/disable the device.
if (mAssociatedDisplayPort) {
mAssociatedViewport =
readerConfig.getDisplayViewportByPort(*mAssociatedDisplayPort);
if (!mAssociatedViewport) {
ALOGW("Input device %s should be associated with display on port %" PRIu8 ", "
"but the corresponding viewport is not found.",
getName().c_str(), *mAssociatedDisplayPort);
}
} else if (mAssociatedDisplayUniqueId != std::nullopt) {
mAssociatedViewport =
readerConfig.getDisplayViewportByUniqueId(*mAssociatedDisplayUniqueId);
if (!mAssociatedViewport) {
ALOGW("Input device %s should be associated with display %s but the "
"corresponding viewport cannot be found",
getName().c_str(), mAssociatedDisplayUniqueId->c_str());
}
}
if (getAssociatedDisplayId() != oldAssociatedDisplayId) {
bumpGeneration();
}
}
for_each_mapper([this, when, &readerConfig, changes, &out](InputMapper& mapper) {
out += mapper.reconfigure(when, readerConfig, changes);
mSources |= mapper.getSources();
});
if (!changes.any() || changes.test(Change::ENABLED_STATE) ||
changes.test(Change::DISPLAY_INFO)) {
// Whether a device is enabled can depend on the display association,
// so update the enabled state when there is a change in display info.
out += updateEnableState(when, readerConfig, forceEnable);
}
}
return out;
}
std::list<NotifyArgs> InputDevice::reset(nsecs_t when) {
std::list<NotifyArgs> out;
for_each_mapper([&](InputMapper& mapper) { out += mapper.reset(when); });
mContext->updateGlobalMetaState();
out.push_back(notifyReset(when));
return out;
}
std::list<NotifyArgs> InputDevice::process(const RawEvent* rawEvents, size_t count) {
// Process all of the events in order for each mapper.
// We cannot simply ask each mapper to process them in bulk because mappers may
// have side-effects that must be interleaved. For example, joystick movement events and
// gamepad button presses are handled by different mappers but they should be dispatched
// in the order received.
std::list<NotifyArgs> out;
for (const RawEvent* rawEvent = rawEvents; count != 0; rawEvent++) {
if (debugRawEvents()) {
const auto [type, code, value] =
InputEventLookup::getLinuxEvdevLabel(rawEvent->type, rawEvent->code,
rawEvent->value);
ALOGD("Input event: eventHubDevice=%d type=%s code=%s value=%s when=%" PRId64,
rawEvent->deviceId, type.c_str(), code.c_str(), value.c_str(), rawEvent->when);
}
if (mDropUntilNextSync) {
if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
out += reset(rawEvent->when);
mDropUntilNextSync = false;
ALOGD_IF(debugRawEvents(), "Recovered from input event buffer overrun.");
} else {
ALOGD_IF(debugRawEvents(),
"Dropped input event while waiting for next input sync.");
}
} else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED) {
ALOGI("Detected input event buffer overrun for device %s.", getName().c_str());
mDropUntilNextSync = true;
} else {
for_each_mapper_in_subdevice(rawEvent->deviceId, [&](InputMapper& mapper) {
out += mapper.process(rawEvent);
});
}
--count;
}
postProcess(out);
return out;
}
void InputDevice::postProcess(std::list<NotifyArgs>& args) const {
if (mIsWaking) {
// Update policy flags to request wake for the `NotifyArgs` that come from waking devices.
for (auto& arg : args) {
if (const auto notifyMotionArgs = std::get_if<NotifyMotionArgs>(&arg)) {
notifyMotionArgs->policyFlags |= POLICY_FLAG_WAKE;
} else if (const auto notifySwitchArgs = std::get_if<NotifySwitchArgs>(&arg)) {
notifySwitchArgs->policyFlags |= POLICY_FLAG_WAKE;
} else if (const auto notifyKeyArgs = std::get_if<NotifyKeyArgs>(&arg)) {
notifyKeyArgs->policyFlags |= POLICY_FLAG_WAKE;
}
}
}
}
std::list<NotifyArgs> InputDevice::timeoutExpired(nsecs_t when) {
std::list<NotifyArgs> out;
for_each_mapper([&](InputMapper& mapper) { out += mapper.timeoutExpired(when); });
return out;
}
std::list<NotifyArgs> InputDevice::updateExternalStylusState(const StylusState& state) {
std::list<NotifyArgs> out;
for_each_mapper([&](InputMapper& mapper) { out += mapper.updateExternalStylusState(state); });
return out;
}
InputDeviceInfo InputDevice::getDeviceInfo() {
InputDeviceInfo outDeviceInfo;
outDeviceInfo.initialize(mId, mGeneration, mControllerNumber, mIdentifier, mAlias, mIsExternal,
mHasMic, getAssociatedDisplayId().value_or(ADISPLAY_ID_NONE),
{mShouldSmoothScroll});
for_each_mapper(
[&outDeviceInfo](InputMapper& mapper) { mapper.populateDeviceInfo(outDeviceInfo); });
if (mController) {
mController->populateDeviceInfo(&outDeviceInfo);
}
return outDeviceInfo;
}
int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
return getState(sourceMask, keyCode, &InputMapper::getKeyCodeState);
}
int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
return getState(sourceMask, scanCode, &InputMapper::getScanCodeState);
}
int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
return getState(sourceMask, switchCode, &InputMapper::getSwitchState);
}
int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) {
int32_t result = AKEY_STATE_UNKNOWN;
for (auto& deviceEntry : mDevices) {
auto& devicePair = deviceEntry.second;
auto& mappers = devicePair.second;
for (auto& mapperPtr : mappers) {
InputMapper& mapper = *mapperPtr;
if (sourcesMatchMask(mapper.getSources(), sourceMask)) {
// If any mapper reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that
// value. Otherwise, return AKEY_STATE_UP as long as one mapper reports it.
int32_t currentResult = (mapper.*getStateFunc)(sourceMask, code);
if (currentResult >= AKEY_STATE_DOWN) {
return currentResult;
} else if (currentResult == AKEY_STATE_UP) {
result = currentResult;
}
}
}
}
return result;
}
std::vector<std::unique_ptr<InputMapper>> InputDevice::createMappers(
InputDeviceContext& contextPtr, const InputReaderConfiguration& readerConfig) {
ftl::Flags<InputDeviceClass> classes = contextPtr.getDeviceClasses();
std::vector<std::unique_ptr<InputMapper>> mappers;
// Switch-like devices.
if (classes.test(InputDeviceClass::SWITCH)) {
mappers.push_back(createInputMapper<SwitchInputMapper>(contextPtr, readerConfig));
}
// Scroll wheel-like devices.
if (classes.test(InputDeviceClass::ROTARY_ENCODER)) {
mappers.push_back(createInputMapper<RotaryEncoderInputMapper>(contextPtr, readerConfig));
}
// Vibrator-like devices.
if (classes.test(InputDeviceClass::VIBRATOR)) {
mappers.push_back(createInputMapper<VibratorInputMapper>(contextPtr, readerConfig));
}
// Battery-like devices or light-containing devices.
// PeripheralController will be created with associated EventHub device.
if (classes.test(InputDeviceClass::BATTERY) || classes.test(InputDeviceClass::LIGHT)) {
mController = std::make_unique<PeripheralController>(contextPtr);
}
// Keyboard-like devices.
uint32_t keyboardSource = 0;
int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
if (classes.test(InputDeviceClass::KEYBOARD)) {
keyboardSource |= AINPUT_SOURCE_KEYBOARD;
}
if (classes.test(InputDeviceClass::ALPHAKEY)) {
keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
}
if (classes.test(InputDeviceClass::DPAD)) {
keyboardSource |= AINPUT_SOURCE_DPAD;
}
if (classes.test(InputDeviceClass::GAMEPAD)) {
keyboardSource |= AINPUT_SOURCE_GAMEPAD;
}
if (keyboardSource != 0) {
mappers.push_back(createInputMapper<KeyboardInputMapper>(contextPtr, readerConfig,
keyboardSource, keyboardType));
}
// Cursor-like devices.
if (classes.test(InputDeviceClass::CURSOR)) {
mappers.push_back(createInputMapper<CursorInputMapper>(contextPtr, readerConfig));
}
// Touchscreens and touchpad devices.
static const bool ENABLE_TOUCHPAD_GESTURES_LIBRARY =
sysprop::InputProperties::enable_touchpad_gestures_library().value_or(true);
if (ENABLE_TOUCHPAD_GESTURES_LIBRARY && classes.test(InputDeviceClass::TOUCHPAD) &&
classes.test(InputDeviceClass::TOUCH_MT)) {
mappers.push_back(createInputMapper<TouchpadInputMapper>(contextPtr, readerConfig));
} else if (classes.test(InputDeviceClass::TOUCH_MT)) {
mappers.push_back(createInputMapper<MultiTouchInputMapper>(contextPtr, readerConfig));
} else if (classes.test(InputDeviceClass::TOUCH)) {
mappers.push_back(createInputMapper<SingleTouchInputMapper>(contextPtr, readerConfig));
}
// Joystick-like devices.
if (classes.test(InputDeviceClass::JOYSTICK)) {
mappers.push_back(createInputMapper<JoystickInputMapper>(contextPtr, readerConfig));
}
// Motion sensor enabled devices.
if (classes.test(InputDeviceClass::SENSOR)) {
mappers.push_back(createInputMapper<SensorInputMapper>(contextPtr, readerConfig));
}
// External stylus-like devices.
if (classes.test(InputDeviceClass::EXTERNAL_STYLUS)) {
mappers.push_back(createInputMapper<ExternalStylusInputMapper>(contextPtr, readerConfig));
}
return mappers;
}
bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, const std::vector<int32_t>& keyCodes,
uint8_t* outFlags) {
bool result = false;
for_each_mapper([&result, sourceMask, keyCodes, outFlags](InputMapper& mapper) {
if (sourcesMatchMask(mapper.getSources(), sourceMask)) {
result |= mapper.markSupportedKeyCodes(sourceMask, keyCodes, outFlags);
}
});
return result;
}
int32_t InputDevice::getKeyCodeForKeyLocation(int32_t locationKeyCode) const {
std::optional<int32_t> result = first_in_mappers<int32_t>(
[locationKeyCode](const InputMapper& mapper) -> std::optional<int32_t> const {
if (sourcesMatchMask(mapper.getSources(), AINPUT_SOURCE_KEYBOARD)) {
return std::make_optional(mapper.getKeyCodeForKeyLocation(locationKeyCode));
}
return std::nullopt;
});
if (!result) {
ALOGE("Failed to get key code for key location: No matching InputMapper with source mask "
"KEYBOARD found. The provided input device with id %d has sources %s.",
getId(), inputEventSourceToString(getSources()).c_str());
return AKEYCODE_UNKNOWN;
}
return *result;
}
std::list<NotifyArgs> InputDevice::vibrate(const VibrationSequence& sequence, ssize_t repeat,
int32_t token) {
std::list<NotifyArgs> out;
for_each_mapper([&](InputMapper& mapper) { out += mapper.vibrate(sequence, repeat, token); });
return out;
}
std::list<NotifyArgs> InputDevice::cancelVibrate(int32_t token) {
std::list<NotifyArgs> out;
for_each_mapper([&](InputMapper& mapper) { out += mapper.cancelVibrate(token); });
return out;
}
bool InputDevice::isVibrating() {
bool vibrating = false;
for_each_mapper([&vibrating](InputMapper& mapper) { vibrating |= mapper.isVibrating(); });
return vibrating;
}
/* There's no guarantee the IDs provided by the different mappers are unique, so if we have two
* different vibration mappers then we could have duplicate IDs.
* Alternatively, if we have a merged device that has multiple evdev nodes with FF_* capabilities,
* we would definitely have duplicate IDs.
*/
std::vector<int32_t> InputDevice::getVibratorIds() {
std::vector<int32_t> vibrators;
for_each_mapper([&vibrators](InputMapper& mapper) {
std::vector<int32_t> devVibs = mapper.getVibratorIds();
vibrators.reserve(vibrators.size() + devVibs.size());
vibrators.insert(vibrators.end(), devVibs.begin(), devVibs.end());
});
return vibrators;
}
bool InputDevice::enableSensor(InputDeviceSensorType sensorType,
std::chrono::microseconds samplingPeriod,
std::chrono::microseconds maxBatchReportLatency) {
bool success = true;
for_each_mapper(
[&success, sensorType, samplingPeriod, maxBatchReportLatency](InputMapper& mapper) {
success &= mapper.enableSensor(sensorType, samplingPeriod, maxBatchReportLatency);
});
return success;
}
void InputDevice::disableSensor(InputDeviceSensorType sensorType) {
for_each_mapper([sensorType](InputMapper& mapper) { mapper.disableSensor(sensorType); });
}
void InputDevice::flushSensor(InputDeviceSensorType sensorType) {
for_each_mapper([sensorType](InputMapper& mapper) { mapper.flushSensor(sensorType); });
}
std::list<NotifyArgs> InputDevice::cancelTouch(nsecs_t when, nsecs_t readTime) {
std::list<NotifyArgs> out;
for_each_mapper([&](InputMapper& mapper) { out += mapper.cancelTouch(when, readTime); });
return out;
}
bool InputDevice::setLightColor(int32_t lightId, int32_t color) {
return mController ? mController->setLightColor(lightId, color) : false;
}
bool InputDevice::setLightPlayerId(int32_t lightId, int32_t playerId) {
return mController ? mController->setLightPlayerId(lightId, playerId) : false;
}
std::optional<int32_t> InputDevice::getLightColor(int32_t lightId) {
return mController ? mController->getLightColor(lightId) : std::nullopt;
}
std::optional<int32_t> InputDevice::getLightPlayerId(int32_t lightId) {
return mController ? mController->getLightPlayerId(lightId) : std::nullopt;
}
int32_t InputDevice::getMetaState() {
int32_t result = 0;
for_each_mapper([&result](InputMapper& mapper) { result |= mapper.getMetaState(); });
return result;
}
void InputDevice::updateMetaState(int32_t keyCode) {
first_in_mappers<bool>([keyCode](InputMapper& mapper) {
if (sourcesMatchMask(mapper.getSources(), AINPUT_SOURCE_KEYBOARD) &&
mapper.updateMetaState(keyCode)) {
return std::make_optional(true);
}
return std::optional<bool>();
});
}
void InputDevice::addKeyRemapping(int32_t fromKeyCode, int32_t toKeyCode) {
for_each_subdevice([fromKeyCode, toKeyCode](auto& context) {
context.addKeyRemapping(fromKeyCode, toKeyCode);
});
}
void InputDevice::bumpGeneration() {
mGeneration = mContext->bumpGeneration();
}
NotifyDeviceResetArgs InputDevice::notifyReset(nsecs_t when) {
return NotifyDeviceResetArgs(mContext->getNextId(), when, mId);
}
std::optional<int32_t> InputDevice::getAssociatedDisplayId() {
// Check if we had associated to the specific display.
if (mAssociatedViewport) {
return mAssociatedViewport->displayId;
}
// No associated display port, check if some InputMapper is associated.
return first_in_mappers<int32_t>(
[](InputMapper& mapper) { return mapper.getAssociatedDisplayId(); });
}
// returns the number of mappers associated with the device
size_t InputDevice::getMapperCount() {
size_t count = 0;
for (auto& deviceEntry : mDevices) {
auto& devicePair = deviceEntry.second;
auto& mappers = devicePair.second;
count += mappers.size();
}
return count;
}
void InputDevice::updateLedState(bool reset) {
for_each_mapper([reset](InputMapper& mapper) { mapper.updateLedState(reset); });
}
std::optional<int32_t> InputDevice::getBatteryEventHubId() const {
return mController ? std::make_optional(mController->getEventHubId()) : std::nullopt;
}
InputDeviceContext::InputDeviceContext(InputDevice& device, int32_t eventHubId)
: mDevice(device),
mContext(device.getContext()),
mEventHub(device.getContext()->getEventHub()),
mId(eventHubId),
mDeviceId(device.getId()) {}
InputDeviceContext::~InputDeviceContext() {}
} // namespace android
|