1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <locale>
#include <ftl/enum.h>
#include "../Macros.h"
#include "SensorInputMapper.h"
// Log detailed debug messages about each sensor event notification to the dispatcher.
constexpr bool DEBUG_SENSOR_EVENT_DETAILS = false;
namespace android {
// Mask for the LSB 2nd, 3rd and fourth bits.
constexpr int REPORTING_MODE_MASK = 0xE;
constexpr int REPORTING_MODE_SHIFT = 1;
constexpr float GRAVITY_MS2_UNIT = 9.80665f;
constexpr float DEGREE_RADIAN_UNIT = 0.0174533f;
/* Convert the sensor data from Linux to Android
* Linux accelerometer unit is per g, Android unit is m/s^2
* Linux gyroscope unit is degree/second, Android unit is radians/second
*/
static void convertFromLinuxToAndroid(std::vector<float>& values,
InputDeviceSensorType sensorType) {
for (size_t i = 0; i < values.size(); i++) {
switch (sensorType) {
case InputDeviceSensorType::ACCELEROMETER:
values[i] *= GRAVITY_MS2_UNIT;
break;
case InputDeviceSensorType::GYROSCOPE:
values[i] *= DEGREE_RADIAN_UNIT;
break;
default:
break;
}
}
}
SensorInputMapper::SensorInputMapper(InputDeviceContext& deviceContext,
const InputReaderConfiguration& readerConfig)
: InputMapper(deviceContext, readerConfig) {}
SensorInputMapper::~SensorInputMapper() {}
uint32_t SensorInputMapper::getSources() const {
return AINPUT_SOURCE_SENSOR;
}
void SensorInputMapper::parseSensorConfiguration(InputDeviceSensorType sensorType, int32_t absCode,
int32_t sensorDataIndex, const Axis& axis) {
auto it = mSensors.find(sensorType);
if (it == mSensors.end()) {
Sensor sensor = createSensor(sensorType, axis);
sensor.dataVec[sensorDataIndex] = absCode;
mSensors.emplace(sensorType, sensor);
} else {
it->second.dataVec[sensorDataIndex] = absCode;
}
}
void SensorInputMapper::populateDeviceInfo(InputDeviceInfo& info) {
InputMapper::populateDeviceInfo(info);
for (const auto& [sensorType, sensor] : mSensors) {
info.addSensorInfo(sensor.sensorInfo);
info.setHasSensor(true);
}
}
void SensorInputMapper::dump(std::string& dump) {
dump += INDENT2 "Sensor Input Mapper:\n";
dump += StringPrintf(INDENT3 " isDeviceEnabled %d\n", getDeviceContext().isDeviceEnabled());
dump += StringPrintf(INDENT3 " mHasHardwareTimestamp %d\n", mHasHardwareTimestamp);
dump += INDENT3 "Sensors:\n";
for (const auto& [sensorType, sensor] : mSensors) {
dump += StringPrintf(INDENT4 "%s\n", ftl::enum_string(sensorType).c_str());
dump += StringPrintf(INDENT5 "enabled: %d\n", sensor.enabled);
dump += StringPrintf(INDENT5 "samplingPeriod: %lld\n", sensor.samplingPeriod.count());
dump += StringPrintf(INDENT5 "maxBatchReportLatency: %lld\n",
sensor.maxBatchReportLatency.count());
dump += StringPrintf(INDENT5 "maxRange: %f\n", sensor.sensorInfo.maxRange);
dump += StringPrintf(INDENT5 "power: %f\n", sensor.sensorInfo.power);
for (ssize_t i = 0; i < SENSOR_VEC_LEN; i++) {
int32_t rawAxis = sensor.dataVec[i];
dump += StringPrintf(INDENT5 "[%zd]: rawAxis: %d \n", i, rawAxis);
const auto it = mAxes.find(rawAxis);
if (it != mAxes.end()) {
const Axis& axis = it->second;
dump += StringPrintf(INDENT5 " min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f,"
"resolution=%0.5f\n",
axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution);
dump += StringPrintf(INDENT5 " scale=%0.5f, offset=%0.5f\n", axis.scale,
axis.offset);
dump += StringPrintf(INDENT5 " rawMin=%d, rawMax=%d, "
"rawFlat=%d, rawFuzz=%d, rawResolution=%d\n",
axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue,
axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz,
axis.rawAxisInfo.resolution);
}
}
}
}
std::list<NotifyArgs> SensorInputMapper::reconfigure(nsecs_t when,
const InputReaderConfiguration& config,
ConfigurationChanges changes) {
std::list<NotifyArgs> out = InputMapper::reconfigure(when, config, changes);
if (!changes.any()) { // first time only
mDeviceEnabled = true;
// Check if device has MSC_TIMESTAMP event.
mHasHardwareTimestamp = getDeviceContext().hasMscEvent(MSC_TIMESTAMP);
// Collect all axes.
for (int32_t abs = ABS_X; abs <= ABS_MAX; abs++) {
// axis must be claimed by sensor class device
if (!(getAbsAxisUsage(abs, getDeviceContext().getDeviceClasses())
.test(InputDeviceClass::SENSOR))) {
continue;
}
RawAbsoluteAxisInfo rawAxisInfo;
getAbsoluteAxisInfo(abs, &rawAxisInfo);
if (rawAxisInfo.valid) {
AxisInfo axisInfo;
// Axis doesn't need to be mapped, as sensor mapper doesn't generate any motion
// input events
axisInfo.mode = AxisInfo::MODE_NORMAL;
axisInfo.axis = -1;
// Check key layout map for sensor data mapping to axes
auto ret = getDeviceContext().mapSensor(abs);
if (ret.ok()) {
InputDeviceSensorType sensorType = (*ret).first;
int32_t sensorDataIndex = (*ret).second;
const Axis& axis = createAxis(axisInfo, rawAxisInfo);
parseSensorConfiguration(sensorType, abs, sensorDataIndex, axis);
mAxes.insert({abs, axis});
}
}
}
}
return out;
}
SensorInputMapper::Axis SensorInputMapper::createAxis(const AxisInfo& axisInfo,
const RawAbsoluteAxisInfo& rawAxisInfo) {
// Apply flat override.
int32_t rawFlat = axisInfo.flatOverride < 0 ? rawAxisInfo.flat : axisInfo.flatOverride;
float scale = std::numeric_limits<float>::signaling_NaN();
float offset = 0;
// resolution is 1 of sensor's unit. For accelerometer, it is G, for gyroscope,
// it is degree/s.
scale = 1.0f / rawAxisInfo.resolution;
offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale;
const float max = rawAxisInfo.maxValue / rawAxisInfo.resolution;
const float min = rawAxisInfo.minValue / rawAxisInfo.resolution;
const float flat = rawFlat * scale;
const float fuzz = rawAxisInfo.fuzz * scale;
const float resolution = rawAxisInfo.resolution;
// To eliminate noise while the Sensor is at rest, filter out small variations
// in axis values up front.
const float filter = fuzz ? fuzz : flat * 0.25f;
return Axis(rawAxisInfo, axisInfo, scale, offset, min, max, flat, fuzz, resolution, filter);
}
std::list<NotifyArgs> SensorInputMapper::reset(nsecs_t when) {
// Recenter all axes.
for (std::pair<const int32_t, Axis>& pair : mAxes) {
Axis& axis = pair.second;
axis.resetValue();
}
mHardwareTimestamp = 0;
mPrevMscTime = 0;
return InputMapper::reset(when);
}
SensorInputMapper::Sensor SensorInputMapper::createSensor(InputDeviceSensorType sensorType,
const Axis& axis) {
InputDeviceIdentifier identifier = getDeviceContext().getDeviceIdentifier();
const auto& config = getDeviceContext().getConfiguration();
std::string prefix = "sensor." + ftl::enum_string(sensorType);
transform(prefix.begin(), prefix.end(), prefix.begin(), ::tolower);
int32_t flags = 0;
std::optional<int32_t> reportingMode = config.getInt(prefix + ".reportingMode");
if (reportingMode.has_value()) {
flags |= (*reportingMode & REPORTING_MODE_MASK) << REPORTING_MODE_SHIFT;
}
// Sensor Id will be assigned to device Id to distinguish same sensor from multiple input
// devices, in such a way that the sensor Id will be same as input device Id.
// The sensorType is to distinguish different sensors within one device.
// One input device can only have 1 sensor for each sensor Type.
InputDeviceSensorInfo sensorInfo(identifier.name, std::to_string(identifier.vendor),
identifier.version, sensorType,
InputDeviceSensorAccuracy::ACCURACY_HIGH,
/*maxRange=*/axis.max, /*resolution=*/axis.scale,
/*power=*/config.getFloat(prefix + ".power").value_or(0.0f),
/*minDelay=*/config.getInt(prefix + ".minDelay").value_or(0),
/*fifoReservedEventCount=*/
config.getInt(prefix + ".fifoReservedEventCount").value_or(0),
/*fifoMaxEventCount=*/
config.getInt(prefix + ".fifoMaxEventCount").value_or(0),
ftl::enum_string(sensorType),
/*maxDelay=*/config.getInt(prefix + ".maxDelay").value_or(0),
/*flags=*/flags, getDeviceId());
return Sensor(sensorInfo);
}
void SensorInputMapper::processHardWareTimestamp(nsecs_t evTime, int32_t mscTime) {
// Since MSC_TIMESTAMP initial state is different from the system time, we
// calculate the difference between two MSC_TIMESTAMP events, and use that
// to calculate the system time that should be tagged on the event.
// if the first time MSC_TIMESTAMP, store it
// else calculate difference between previous and current MSC_TIMESTAMP
if (mPrevMscTime == 0) {
mHardwareTimestamp = evTime;
if (DEBUG_SENSOR_EVENT_DETAILS) {
ALOGD("Initialize hardware timestamp = %" PRId64, mHardwareTimestamp);
}
} else {
// Calculate the difference between current msc_timestamp and
// previous msc_timestamp, including when msc_timestamp wraps around.
uint32_t timeDiff = (mPrevMscTime > static_cast<uint32_t>(mscTime))
? (UINT32_MAX - mPrevMscTime + static_cast<uint32_t>(mscTime + 1))
: (static_cast<uint32_t>(mscTime) - mPrevMscTime);
mHardwareTimestamp += timeDiff * 1000LL;
}
mPrevMscTime = static_cast<uint32_t>(mscTime);
}
std::list<NotifyArgs> SensorInputMapper::process(const RawEvent* rawEvent) {
std::list<NotifyArgs> out;
switch (rawEvent->type) {
case EV_ABS: {
auto it = mAxes.find(rawEvent->code);
if (it != mAxes.end()) {
Axis& axis = it->second;
axis.newValue = rawEvent->value * axis.scale + axis.offset;
}
break;
}
case EV_SYN:
switch (rawEvent->code) {
case SYN_REPORT:
for (std::pair<const int32_t, Axis>& pair : mAxes) {
Axis& axis = pair.second;
axis.currentValue = axis.newValue;
}
out += sync(rawEvent->when, /*force=*/false);
break;
}
break;
case EV_MSC:
switch (rawEvent->code) {
case MSC_TIMESTAMP:
// hardware timestamp is nano seconds
processHardWareTimestamp(rawEvent->when, rawEvent->value);
break;
}
}
return out;
}
bool SensorInputMapper::setSensorEnabled(InputDeviceSensorType sensorType, bool enabled) {
auto it = mSensors.find(sensorType);
if (it == mSensors.end()) {
return false;
}
it->second.enabled = enabled;
if (!enabled) {
it->second.resetValue();
}
/* Currently we can't enable/disable sensors individually. Enabling any sensor will enable
* the device
*/
mDeviceEnabled = false;
for (const auto& [_, sensor] : mSensors) {
// If any sensor is on we will turn on the device.
if (sensor.enabled) {
mDeviceEnabled = true;
break;
}
}
return true;
}
void SensorInputMapper::flushSensor(InputDeviceSensorType sensorType) {
auto it = mSensors.find(sensorType);
if (it == mSensors.end()) {
return;
}
auto& sensor = it->second;
sensor.lastSampleTimeNs = 0;
for (size_t i = 0; i < SENSOR_VEC_LEN; i++) {
int32_t abs = sensor.dataVec[i];
auto itAxis = mAxes.find(abs);
if (itAxis != mAxes.end()) {
Axis& axis = itAxis->second;
axis.resetValue();
}
}
}
bool SensorInputMapper::enableSensor(InputDeviceSensorType sensorType,
std::chrono::microseconds samplingPeriod,
std::chrono::microseconds maxBatchReportLatency) {
if (DEBUG_SENSOR_EVENT_DETAILS) {
ALOGD("Enable Sensor %s samplingPeriod %lld maxBatchReportLatency %lld",
ftl::enum_string(sensorType).c_str(), samplingPeriod.count(),
maxBatchReportLatency.count());
}
if (!setSensorEnabled(sensorType, /*enabled=*/true)) {
return false;
}
// Enable device
if (mDeviceEnabled) {
getDeviceContext().enableDevice();
}
// We know the sensor exists now, update the sampling period and batch report latency.
auto it = mSensors.find(sensorType);
it->second.samplingPeriod =
std::chrono::duration_cast<std::chrono::nanoseconds>(samplingPeriod);
it->second.maxBatchReportLatency =
std::chrono::duration_cast<std::chrono::nanoseconds>(maxBatchReportLatency);
return true;
}
void SensorInputMapper::disableSensor(InputDeviceSensorType sensorType) {
if (DEBUG_SENSOR_EVENT_DETAILS) {
ALOGD("Disable Sensor %s", ftl::enum_string(sensorType).c_str());
}
if (!setSensorEnabled(sensorType, /*enabled=*/false)) {
return;
}
// Disable device
if (!mDeviceEnabled) {
mHardwareTimestamp = 0;
mPrevMscTime = 0;
getDeviceContext().disableDevice();
}
}
std::list<NotifyArgs> SensorInputMapper::sync(nsecs_t when, bool force) {
std::list<NotifyArgs> out;
for (auto& [sensorType, sensor] : mSensors) {
// Skip if sensor not enabled
if (!sensor.enabled) {
continue;
}
std::vector<float> values;
for (ssize_t i = 0; i < SENSOR_VEC_LEN; i++) {
int32_t abs = sensor.dataVec[i];
auto it = mAxes.find(abs);
if (it != mAxes.end()) {
const Axis& axis = it->second;
values.push_back(axis.currentValue);
}
}
nsecs_t timestamp = mHasHardwareTimestamp ? mHardwareTimestamp : when;
if (DEBUG_SENSOR_EVENT_DETAILS) {
ALOGD("Sensor %s timestamp %" PRIu64 " values [%f %f %f]",
ftl::enum_string(sensorType).c_str(), timestamp, values[0], values[1], values[2]);
}
if (sensor.lastSampleTimeNs.has_value() &&
timestamp - sensor.lastSampleTimeNs.value() < sensor.samplingPeriod.count()) {
if (DEBUG_SENSOR_EVENT_DETAILS) {
ALOGD("Sensor %s Skip a sample.", ftl::enum_string(sensorType).c_str());
}
} else {
// Convert to Android unit
convertFromLinuxToAndroid(values, sensorType);
// Notify dispatcher for sensor event
out.push_back(NotifySensorArgs(getContext()->getNextId(), when, getDeviceId(),
AINPUT_SOURCE_SENSOR, sensorType,
sensor.sensorInfo.accuracy,
/*accuracyChanged=*/sensor.accuracy !=
sensor.sensorInfo.accuracy,
/*hwTimestamp=*/timestamp, values));
sensor.lastSampleTimeNs = timestamp;
sensor.accuracy = sensor.sensorInfo.accuracy;
}
}
return out;
}
} // namespace android
|