1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#undef LOG_TAG
#define LOG_TAG "PowerAdvisor"
#include <unistd.h>
#include <cinttypes>
#include <cstdint>
#include <optional>
#include <android-base/properties.h>
#include <utils/Log.h>
#include <utils/Mutex.h>
#include <utils/Trace.h>
#include <binder/IServiceManager.h>
#include "../SurfaceFlingerProperties.h"
#include "PowerAdvisor.h"
#include "SurfaceFlinger.h"
namespace android {
namespace Hwc2 {
PowerAdvisor::~PowerAdvisor() = default;
namespace impl {
using aidl::android::hardware::power::Boost;
using aidl::android::hardware::power::Mode;
using aidl::android::hardware::power::SessionHint;
using aidl::android::hardware::power::WorkDuration;
PowerAdvisor::~PowerAdvisor() = default;
namespace {
std::chrono::milliseconds getUpdateTimeout() {
// Default to a timeout of 80ms if nothing else is specified
static std::chrono::milliseconds timeout =
std::chrono::milliseconds(sysprop::display_update_imminent_timeout_ms(80));
return timeout;
}
void traceExpensiveRendering(bool enabled) {
if (enabled) {
ATRACE_ASYNC_BEGIN("ExpensiveRendering", 0);
} else {
ATRACE_ASYNC_END("ExpensiveRendering", 0);
}
}
} // namespace
PowerAdvisor::PowerAdvisor(SurfaceFlinger& flinger)
: mPowerHal(std::make_unique<power::PowerHalController>()), mFlinger(flinger) {
if (getUpdateTimeout() > 0ms) {
mScreenUpdateTimer.emplace("UpdateImminentTimer", getUpdateTimeout(),
/* resetCallback */ nullptr,
/* timeoutCallback */
[this] {
while (true) {
auto timeSinceLastUpdate = std::chrono::nanoseconds(
systemTime() - mLastScreenUpdatedTime.load());
if (timeSinceLastUpdate >= getUpdateTimeout()) {
break;
}
// We may try to disable expensive rendering and allow
// for sending DISPLAY_UPDATE_IMMINENT hints too early if
// we idled very shortly after updating the screen, so
// make sure we wait enough time.
std::this_thread::sleep_for(getUpdateTimeout() -
timeSinceLastUpdate);
}
mSendUpdateImminent.store(true);
mFlinger.disableExpensiveRendering();
});
}
}
void PowerAdvisor::init() {
// Defer starting the screen update timer until SurfaceFlinger finishes construction.
if (mScreenUpdateTimer) {
mScreenUpdateTimer->start();
}
}
void PowerAdvisor::onBootFinished() {
mBootFinished.store(true);
}
void PowerAdvisor::setExpensiveRenderingExpected(DisplayId displayId, bool expected) {
if (!mHasExpensiveRendering) {
ALOGV("Skipped sending EXPENSIVE_RENDERING because HAL doesn't support it");
return;
}
if (expected) {
mExpensiveDisplays.insert(displayId);
} else {
mExpensiveDisplays.erase(displayId);
}
const bool expectsExpensiveRendering = !mExpensiveDisplays.empty();
if (mNotifiedExpensiveRendering != expectsExpensiveRendering) {
auto ret = getPowerHal().setMode(Mode::EXPENSIVE_RENDERING, expectsExpensiveRendering);
if (!ret.isOk()) {
if (ret.isUnsupported()) {
mHasExpensiveRendering = false;
}
return;
}
mNotifiedExpensiveRendering = expectsExpensiveRendering;
traceExpensiveRendering(mNotifiedExpensiveRendering);
}
}
void PowerAdvisor::notifyCpuLoadUp() {
// Only start sending this notification once the system has booted so we don't introduce an
// early-boot dependency on Power HAL
if (!mBootFinished.load()) {
return;
}
if (usePowerHintSession()) {
std::lock_guard lock(mHintSessionMutex);
if (ensurePowerHintSessionRunning()) {
auto ret = mHintSession->sendHint(SessionHint::CPU_LOAD_UP);
if (!ret.isOk()) {
mHintSession = nullptr;
}
}
}
}
void PowerAdvisor::notifyDisplayUpdateImminentAndCpuReset() {
// Only start sending this notification once the system has booted so we don't introduce an
// early-boot dependency on Power HAL
if (!mBootFinished.load()) {
return;
}
if (mSendUpdateImminent.exchange(false)) {
ALOGV("AIDL notifyDisplayUpdateImminentAndCpuReset");
if (usePowerHintSession()) {
std::lock_guard lock(mHintSessionMutex);
if (ensurePowerHintSessionRunning()) {
auto ret = mHintSession->sendHint(SessionHint::CPU_LOAD_RESET);
if (!ret.isOk()) {
mHintSession = nullptr;
}
}
}
if (!mHasDisplayUpdateImminent) {
ALOGV("Skipped sending DISPLAY_UPDATE_IMMINENT because HAL doesn't support it");
} else {
auto ret = getPowerHal().setBoost(Boost::DISPLAY_UPDATE_IMMINENT, 0);
if (ret.isUnsupported()) {
mHasDisplayUpdateImminent = false;
}
}
if (mScreenUpdateTimer) {
mScreenUpdateTimer->reset();
} else {
// If we don't have a screen update timer, then we don't throttle power hal calls so
// flip this bit back to allow for calling into power hal again.
mSendUpdateImminent.store(true);
}
}
if (mScreenUpdateTimer) {
mLastScreenUpdatedTime.store(systemTime());
}
}
bool PowerAdvisor::usePowerHintSession() {
// uses cached value since the underlying support and flag are unlikely to change at runtime
return mHintSessionEnabled.value_or(false) && supportsPowerHintSession();
}
bool PowerAdvisor::supportsPowerHintSession() {
if (!mSupportsHintSession.has_value()) {
mSupportsHintSession = getPowerHal().getHintSessionPreferredRate().isOk();
}
return *mSupportsHintSession;
}
bool PowerAdvisor::ensurePowerHintSessionRunning() {
if (mHintSession == nullptr && !mHintSessionThreadIds.empty() && usePowerHintSession()) {
auto ret = getPowerHal().createHintSession(getpid(), static_cast<int32_t>(getuid()),
mHintSessionThreadIds, mTargetDuration.ns());
if (ret.isOk()) {
mHintSession = ret.value();
}
}
return mHintSession != nullptr;
}
void PowerAdvisor::updateTargetWorkDuration(Duration targetDuration) {
if (!usePowerHintSession()) {
ALOGV("Power hint session target duration cannot be set, skipping");
return;
}
ATRACE_CALL();
{
mTargetDuration = targetDuration;
if (sTraceHintSessionData) ATRACE_INT64("Time target", targetDuration.ns());
if (targetDuration == mLastTargetDurationSent) return;
std::lock_guard lock(mHintSessionMutex);
if (ensurePowerHintSessionRunning()) {
ALOGV("Sending target time: %" PRId64 "ns", targetDuration.ns());
mLastTargetDurationSent = targetDuration;
auto ret = mHintSession->updateTargetWorkDuration(targetDuration.ns());
if (!ret.isOk()) {
ALOGW("Failed to set power hint target work duration with error: %s",
ret.getDescription().c_str());
mHintSession = nullptr;
}
}
}
}
void PowerAdvisor::reportActualWorkDuration() {
if (!mBootFinished || !sUseReportActualDuration || !usePowerHintSession()) {
ALOGV("Actual work duration power hint cannot be sent, skipping");
return;
}
ATRACE_CALL();
std::optional<Duration> actualDuration = estimateWorkDuration();
if (!actualDuration.has_value() || actualDuration < 0ns) {
ALOGV("Failed to send actual work duration, skipping");
return;
}
actualDuration = std::make_optional(*actualDuration + sTargetSafetyMargin);
mActualDuration = actualDuration;
if (sTraceHintSessionData) {
ATRACE_INT64("Measured duration", actualDuration->ns());
ATRACE_INT64("Target error term", Duration{*actualDuration - mTargetDuration}.ns());
ATRACE_INT64("Reported duration", actualDuration->ns());
ATRACE_INT64("Reported target", mLastTargetDurationSent.ns());
ATRACE_INT64("Reported target error term",
Duration{*actualDuration - mLastTargetDurationSent}.ns());
}
ALOGV("Sending actual work duration of: %" PRId64 " on reported target: %" PRId64
" with error: %" PRId64,
actualDuration->ns(), mLastTargetDurationSent.ns(),
Duration{*actualDuration - mLastTargetDurationSent}.ns());
if (mTimingTestingMode) {
mDelayReportActualMutexAcquisitonPromise.get_future().wait();
mDelayReportActualMutexAcquisitonPromise = std::promise<bool>{};
}
{
std::lock_guard lock(mHintSessionMutex);
if (!ensurePowerHintSessionRunning()) {
ALOGV("Hint session not running and could not be started, skipping");
return;
}
WorkDuration duration{
.timeStampNanos = TimePoint::now().ns(),
// TODO(b/284324521): Correctly calculate total duration.
.durationNanos = actualDuration->ns(),
.workPeriodStartTimestampNanos = mCommitStartTimes[0].ns(),
.cpuDurationNanos = actualDuration->ns(),
// TODO(b/284324521): Calculate RenderEngine GPU time.
.gpuDurationNanos = 0,
};
mHintSessionQueue.push_back(duration);
auto ret = mHintSession->reportActualWorkDuration(mHintSessionQueue);
if (!ret.isOk()) {
ALOGW("Failed to report actual work durations with error: %s",
ret.getDescription().c_str());
mHintSession = nullptr;
return;
}
}
mHintSessionQueue.clear();
}
void PowerAdvisor::enablePowerHintSession(bool enabled) {
mHintSessionEnabled = enabled;
}
bool PowerAdvisor::startPowerHintSession(std::vector<int32_t>&& threadIds) {
mHintSessionThreadIds = threadIds;
if (!mBootFinished.load()) {
return false;
}
if (!usePowerHintSession()) {
ALOGI("Cannot start power hint session: disabled or unsupported");
return false;
}
LOG_ALWAYS_FATAL_IF(mHintSessionThreadIds.empty(),
"No thread IDs provided to power hint session!");
std::lock_guard lock(mHintSessionMutex);
if (mHintSession != nullptr) {
ALOGE("Cannot start power hint session: already running");
return false;
}
return ensurePowerHintSessionRunning();
}
void PowerAdvisor::setGpuFenceTime(DisplayId displayId, std::unique_ptr<FenceTime>&& fenceTime) {
DisplayTimingData& displayData = mDisplayTimingData[displayId];
if (displayData.gpuEndFenceTime) {
nsecs_t signalTime = displayData.gpuEndFenceTime->getSignalTime();
if (signalTime != Fence::SIGNAL_TIME_INVALID && signalTime != Fence::SIGNAL_TIME_PENDING) {
for (auto&& [_, otherDisplayData] : mDisplayTimingData) {
// If the previous display started before us but ended after we should have
// started, then it likely delayed our start time and we must compensate for that.
// Displays finishing earlier should have already made their way through this call
// and swapped their timing into "lastValid" from "latest", so we check that here.
if (!otherDisplayData.lastValidGpuStartTime.has_value()) continue;
if ((*otherDisplayData.lastValidGpuStartTime < *displayData.gpuStartTime) &&
(*otherDisplayData.lastValidGpuEndTime > *displayData.gpuStartTime)) {
displayData.lastValidGpuStartTime = *otherDisplayData.lastValidGpuEndTime;
break;
}
}
displayData.lastValidGpuStartTime = displayData.gpuStartTime;
displayData.lastValidGpuEndTime = TimePoint::fromNs(signalTime);
}
}
displayData.gpuEndFenceTime = std::move(fenceTime);
displayData.gpuStartTime = TimePoint::now();
}
void PowerAdvisor::setHwcValidateTiming(DisplayId displayId, TimePoint validateStartTime,
TimePoint validateEndTime) {
DisplayTimingData& displayData = mDisplayTimingData[displayId];
displayData.hwcValidateStartTime = validateStartTime;
displayData.hwcValidateEndTime = validateEndTime;
}
void PowerAdvisor::setHwcPresentTiming(DisplayId displayId, TimePoint presentStartTime,
TimePoint presentEndTime) {
DisplayTimingData& displayData = mDisplayTimingData[displayId];
displayData.hwcPresentStartTime = presentStartTime;
displayData.hwcPresentEndTime = presentEndTime;
}
void PowerAdvisor::setSkippedValidate(DisplayId displayId, bool skipped) {
mDisplayTimingData[displayId].skippedValidate = skipped;
}
void PowerAdvisor::setRequiresClientComposition(DisplayId displayId,
bool requiresClientComposition) {
mDisplayTimingData[displayId].usedClientComposition = requiresClientComposition;
}
void PowerAdvisor::setExpectedPresentTime(TimePoint expectedPresentTime) {
mExpectedPresentTimes.append(expectedPresentTime);
}
void PowerAdvisor::setSfPresentTiming(TimePoint presentFenceTime, TimePoint presentEndTime) {
mLastSfPresentEndTime = presentEndTime;
mLastPresentFenceTime = presentFenceTime;
}
void PowerAdvisor::setFrameDelay(Duration frameDelayDuration) {
mFrameDelayDuration = frameDelayDuration;
}
void PowerAdvisor::setHwcPresentDelayedTime(DisplayId displayId, TimePoint earliestFrameStartTime) {
mDisplayTimingData[displayId].hwcPresentDelayedTime = earliestFrameStartTime;
}
void PowerAdvisor::setCommitStart(TimePoint commitStartTime) {
mCommitStartTimes.append(commitStartTime);
}
void PowerAdvisor::setCompositeEnd(TimePoint compositeEndTime) {
mLastPostcompDuration = compositeEndTime - mLastSfPresentEndTime;
}
void PowerAdvisor::setDisplays(std::vector<DisplayId>& displayIds) {
mDisplayIds = displayIds;
}
void PowerAdvisor::setTotalFrameTargetWorkDuration(Duration targetDuration) {
mTotalFrameTargetDuration = targetDuration;
}
std::vector<DisplayId> PowerAdvisor::getOrderedDisplayIds(
std::optional<TimePoint> DisplayTimingData::*sortBy) {
std::vector<DisplayId> sortedDisplays;
std::copy_if(mDisplayIds.begin(), mDisplayIds.end(), std::back_inserter(sortedDisplays),
[&](DisplayId id) {
return mDisplayTimingData.count(id) &&
(mDisplayTimingData[id].*sortBy).has_value();
});
std::sort(sortedDisplays.begin(), sortedDisplays.end(), [&](DisplayId idA, DisplayId idB) {
return *(mDisplayTimingData[idA].*sortBy) < *(mDisplayTimingData[idB].*sortBy);
});
return sortedDisplays;
}
std::optional<Duration> PowerAdvisor::estimateWorkDuration() {
if (!mExpectedPresentTimes.isFull() || !mCommitStartTimes.isFull()) {
return std::nullopt;
}
// Tracks when we finish presenting to hwc
TimePoint estimatedHwcEndTime = mCommitStartTimes[0];
// How long we spent this frame not doing anything, waiting for fences or vsync
Duration idleDuration = 0ns;
// Most recent previous gpu end time in the current frame, probably from a prior display, used
// as the start time for the next gpu operation if it ran over time since it probably blocked
std::optional<TimePoint> previousValidGpuEndTime;
// The currently estimated gpu end time for the frame,
// used to accumulate gpu time as we iterate over the active displays
std::optional<TimePoint> estimatedGpuEndTime;
// The timing info for the previously calculated display, if there was one
std::optional<DisplayTimeline> previousDisplayTiming;
std::vector<DisplayId>&& displayIds =
getOrderedDisplayIds(&DisplayTimingData::hwcPresentStartTime);
DisplayTimeline displayTiming;
// Iterate over the displays that use hwc in the same order they are presented
for (DisplayId displayId : displayIds) {
if (mDisplayTimingData.count(displayId) == 0) {
continue;
}
auto& displayData = mDisplayTimingData.at(displayId);
displayTiming = displayData.calculateDisplayTimeline(mLastPresentFenceTime);
// If this is the first display, include the duration before hwc present starts
if (!previousDisplayTiming.has_value()) {
estimatedHwcEndTime += displayTiming.hwcPresentStartTime - mCommitStartTimes[0];
} else { // Otherwise add the time since last display's hwc present finished
estimatedHwcEndTime +=
displayTiming.hwcPresentStartTime - previousDisplayTiming->hwcPresentEndTime;
}
// Update predicted present finish time with this display's present time
estimatedHwcEndTime = displayTiming.hwcPresentEndTime;
// Track how long we spent waiting for the fence, can be excluded from the timing estimate
idleDuration += displayTiming.probablyWaitsForPresentFence
? mLastPresentFenceTime - displayTiming.presentFenceWaitStartTime
: 0ns;
// Track how long we spent waiting to present, can be excluded from the timing estimate
idleDuration += displayTiming.hwcPresentDelayDuration;
// Estimate the reference frame's gpu timing
auto gpuTiming = displayData.estimateGpuTiming(previousValidGpuEndTime);
if (gpuTiming.has_value()) {
previousValidGpuEndTime = gpuTiming->startTime + gpuTiming->duration;
// Estimate the prediction frame's gpu end time from the reference frame
estimatedGpuEndTime = std::max(displayTiming.hwcPresentStartTime,
estimatedGpuEndTime.value_or(TimePoint{0ns})) +
gpuTiming->duration;
}
previousDisplayTiming = displayTiming;
}
ATRACE_INT64("Idle duration", idleDuration.ns());
TimePoint estimatedFlingerEndTime = mLastSfPresentEndTime;
// Don't count time spent idly waiting in the estimate as we could do more work in that time
estimatedHwcEndTime -= idleDuration;
estimatedFlingerEndTime -= idleDuration;
// We finish the frame when both present and the gpu are done, so wait for the later of the two
// Also add the frame delay duration since the target did not move while we were delayed
Duration totalDuration = mFrameDelayDuration +
std::max(estimatedHwcEndTime, estimatedGpuEndTime.value_or(TimePoint{0ns})) -
mCommitStartTimes[0];
// We finish SurfaceFlinger when post-composition finishes, so add that in here
Duration flingerDuration =
estimatedFlingerEndTime + mLastPostcompDuration - mCommitStartTimes[0];
// Combine the two timings into a single normalized one
Duration combinedDuration = combineTimingEstimates(totalDuration, flingerDuration);
return std::make_optional(combinedDuration);
}
Duration PowerAdvisor::combineTimingEstimates(Duration totalDuration, Duration flingerDuration) {
Duration targetDuration{0ns};
targetDuration = mTargetDuration;
if (!mTotalFrameTargetDuration.has_value()) return flingerDuration;
// Normalize total to the flinger target (vsync period) since that's how often we actually send
// hints
Duration normalizedTotalDuration = Duration::fromNs((targetDuration.ns() * totalDuration.ns()) /
mTotalFrameTargetDuration->ns());
return std::max(flingerDuration, normalizedTotalDuration);
}
PowerAdvisor::DisplayTimeline PowerAdvisor::DisplayTimingData::calculateDisplayTimeline(
TimePoint fenceTime) {
DisplayTimeline timeline;
// How long between calling hwc present and trying to wait on the fence
const Duration fenceWaitStartDelay =
(skippedValidate ? kFenceWaitStartDelaySkippedValidate : kFenceWaitStartDelayValidated);
// Did our reference frame wait for an appropriate vsync before calling into hwc
const bool waitedOnHwcPresentTime = hwcPresentDelayedTime.has_value() &&
*hwcPresentDelayedTime > *hwcPresentStartTime &&
*hwcPresentDelayedTime < *hwcPresentEndTime;
// Use validate start here if we skipped it because we did validate + present together
timeline.hwcPresentStartTime = skippedValidate ? *hwcValidateStartTime : *hwcPresentStartTime;
// Use validate end here if we skipped it because we did validate + present together
timeline.hwcPresentEndTime = skippedValidate ? *hwcValidateEndTime : *hwcPresentEndTime;
// How long hwc present was delayed waiting for the next appropriate vsync
timeline.hwcPresentDelayDuration =
(waitedOnHwcPresentTime ? *hwcPresentDelayedTime - *hwcPresentStartTime : 0ns);
// When we started waiting for the present fence after calling into hwc present
timeline.presentFenceWaitStartTime =
timeline.hwcPresentStartTime + timeline.hwcPresentDelayDuration + fenceWaitStartDelay;
timeline.probablyWaitsForPresentFence = fenceTime > timeline.presentFenceWaitStartTime &&
fenceTime < timeline.hwcPresentEndTime;
// How long we ran after we finished waiting for the fence but before hwc present finished
timeline.postPresentFenceHwcPresentDuration = timeline.hwcPresentEndTime -
(timeline.probablyWaitsForPresentFence ? fenceTime
: timeline.presentFenceWaitStartTime);
return timeline;
}
std::optional<PowerAdvisor::GpuTimeline> PowerAdvisor::DisplayTimingData::estimateGpuTiming(
std::optional<TimePoint> previousEndTime) {
if (!(usedClientComposition && lastValidGpuStartTime.has_value() && gpuEndFenceTime)) {
return std::nullopt;
}
const TimePoint latestGpuStartTime =
std::max(previousEndTime.value_or(TimePoint{0ns}), *gpuStartTime);
const nsecs_t gpuEndFenceSignal = gpuEndFenceTime->getSignalTime();
Duration gpuDuration{0ns};
if (gpuEndFenceSignal != Fence::SIGNAL_TIME_INVALID &&
gpuEndFenceSignal != Fence::SIGNAL_TIME_PENDING) {
const TimePoint latestGpuEndTime = TimePoint::fromNs(gpuEndFenceSignal);
// If we know how long the most recent gpu duration was, use that
gpuDuration = latestGpuEndTime - latestGpuStartTime;
} else if (lastValidGpuEndTime.has_value()) {
// If we don't have the fence data, use the most recent information we do have
gpuDuration = *lastValidGpuEndTime - *lastValidGpuStartTime;
if (gpuEndFenceSignal == Fence::SIGNAL_TIME_PENDING) {
// If pending but went over the previous duration, use current time as the end
gpuDuration = std::max(gpuDuration, Duration{TimePoint::now() - latestGpuStartTime});
}
}
return GpuTimeline{.duration = gpuDuration, .startTime = latestGpuStartTime};
}
const bool PowerAdvisor::sTraceHintSessionData =
base::GetBoolProperty(std::string("debug.sf.trace_hint_sessions"), false);
const Duration PowerAdvisor::sTargetSafetyMargin = std::chrono::microseconds(
base::GetIntProperty<int64_t>("debug.sf.hint_margin_us",
ticks<std::micro>(PowerAdvisor::kDefaultTargetSafetyMargin)));
const bool PowerAdvisor::sUseReportActualDuration =
base::GetBoolProperty(std::string("debug.adpf.use_report_actual_duration"), true);
power::PowerHalController& PowerAdvisor::getPowerHal() {
static std::once_flag halFlag;
std::call_once(halFlag, [this] { mPowerHal->init(); });
return *mPowerHal;
}
} // namespace impl
} // namespace Hwc2
} // namespace android
|