1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "SurfaceFlinger"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <cutils/trace.h>
#include <utils/Log.h>
#include <utils/Trace.h>
#include "FrontEnd/LayerLog.h"
#include "TransactionHandler.h"
namespace android::surfaceflinger::frontend {
void TransactionHandler::queueTransaction(TransactionState&& state) {
mLocklessTransactionQueue.push(std::move(state));
mPendingTransactionCount.fetch_add(1);
ATRACE_INT("TransactionQueue", static_cast<int>(mPendingTransactionCount.load()));
}
void TransactionHandler::collectTransactions() {
while (!mLocklessTransactionQueue.isEmpty()) {
auto maybeTransaction = mLocklessTransactionQueue.pop();
if (!maybeTransaction.has_value()) {
break;
}
auto transaction = maybeTransaction.value();
mPendingTransactionQueues[transaction.applyToken].emplace(std::move(transaction));
}
}
std::vector<TransactionState> TransactionHandler::flushTransactions() {
// Collect transaction that are ready to be applied.
std::vector<TransactionState> transactions;
TransactionFlushState flushState;
flushState.queueProcessTime = systemTime();
// Transactions with a buffer pending on a barrier may be on a different applyToken
// than the transaction which satisfies our barrier. In fact this is the exact use case
// that the primitive is designed for. This means we may first process
// the barrier dependent transaction, determine it ineligible to complete
// and then satisfy in a later inner iteration of flushPendingTransactionQueues.
// The barrier dependent transaction was eligible to be presented in this frame
// but we would have prevented it without case. To fix this we continually
// loop through flushPendingTransactionQueues until we perform an iteration
// where the number of transactionsPendingBarrier doesn't change. This way
// we can continue to resolve dependency chains of barriers as far as possible.
int lastTransactionsPendingBarrier = 0;
int transactionsPendingBarrier = 0;
do {
lastTransactionsPendingBarrier = transactionsPendingBarrier;
// Collect transactions that are ready to be applied.
transactionsPendingBarrier = flushPendingTransactionQueues(transactions, flushState);
} while (lastTransactionsPendingBarrier != transactionsPendingBarrier);
applyUnsignaledBufferTransaction(transactions, flushState);
mPendingTransactionCount.fetch_sub(transactions.size());
ATRACE_INT("TransactionQueue", static_cast<int>(mPendingTransactionCount.load()));
return transactions;
}
void TransactionHandler::applyUnsignaledBufferTransaction(
std::vector<TransactionState>& transactions, TransactionFlushState& flushState) {
if (!flushState.queueWithUnsignaledBuffer) {
return;
}
// only apply an unsignaled buffer transaction if it's the first one
if (!transactions.empty()) {
ATRACE_NAME("fence unsignaled");
return;
}
auto it = mPendingTransactionQueues.find(flushState.queueWithUnsignaledBuffer);
LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mPendingTransactionQueues.end(),
"Could not find queue with unsignaled buffer!");
auto& queue = it->second;
popTransactionFromPending(transactions, flushState, queue);
if (queue.empty()) {
it = mPendingTransactionQueues.erase(it);
}
}
void TransactionHandler::popTransactionFromPending(std::vector<TransactionState>& transactions,
TransactionFlushState& flushState,
std::queue<TransactionState>& queue) {
auto& transaction = queue.front();
// Transaction is ready move it from the pending queue.
flushState.firstTransaction = false;
removeFromStalledTransactions(transaction.id);
transactions.emplace_back(std::move(transaction));
queue.pop();
auto& readyToApplyTransaction = transactions.back();
readyToApplyTransaction.traverseStatesWithBuffers([&](const layer_state_t& state) {
const bool frameNumberChanged =
state.bufferData->flags.test(BufferData::BufferDataChange::frameNumberChanged);
if (frameNumberChanged) {
flushState.bufferLayersReadyToPresent.emplace_or_replace(state.surface.get(),
state.bufferData->frameNumber);
} else {
// Barrier function only used for BBQ which always includes a frame number.
// This value only used for barrier logic.
flushState.bufferLayersReadyToPresent
.emplace_or_replace(state.surface.get(), std::numeric_limits<uint64_t>::max());
}
});
}
TransactionHandler::TransactionReadiness TransactionHandler::applyFilters(
TransactionFlushState& flushState) {
auto ready = TransactionReadiness::Ready;
for (auto& filter : mTransactionReadyFilters) {
auto perFilterReady = filter(flushState);
switch (perFilterReady) {
case TransactionReadiness::NotReady:
case TransactionReadiness::NotReadyBarrier:
return perFilterReady;
case TransactionReadiness::NotReadyUnsignaled:
// If one of the filters allows latching an unsignaled buffer, latch this ready
// state.
ready = perFilterReady;
break;
case TransactionReadiness::Ready:
continue;
}
}
return ready;
}
int TransactionHandler::flushPendingTransactionQueues(std::vector<TransactionState>& transactions,
TransactionFlushState& flushState) {
int transactionsPendingBarrier = 0;
auto it = mPendingTransactionQueues.begin();
while (it != mPendingTransactionQueues.end()) {
auto& [applyToken, queue] = *it;
while (!queue.empty()) {
auto& transaction = queue.front();
flushState.transaction = &transaction;
auto ready = applyFilters(flushState);
if (ready == TransactionReadiness::NotReadyBarrier) {
transactionsPendingBarrier++;
break;
} else if (ready == TransactionReadiness::NotReady) {
break;
} else if (ready == TransactionReadiness::NotReadyUnsignaled) {
// We maybe able to latch this transaction if it's the only transaction
// ready to be applied.
flushState.queueWithUnsignaledBuffer = applyToken;
break;
}
// ready == TransactionReadiness::Ready
popTransactionFromPending(transactions, flushState, queue);
}
if (queue.empty()) {
it = mPendingTransactionQueues.erase(it);
} else {
it = std::next(it, 1);
}
}
return transactionsPendingBarrier;
}
void TransactionHandler::addTransactionReadyFilter(TransactionFilter&& filter) {
mTransactionReadyFilters.emplace_back(std::move(filter));
}
bool TransactionHandler::hasPendingTransactions() {
return !mPendingTransactionQueues.empty() || !mLocklessTransactionQueue.isEmpty();
}
void TransactionHandler::onTransactionQueueStalled(uint64_t transactionId,
StalledTransactionInfo stalledTransactionInfo) {
std::lock_guard lock{mStalledMutex};
mStalledTransactions.emplace(transactionId, std::move(stalledTransactionInfo));
}
void TransactionHandler::removeFromStalledTransactions(uint64_t transactionId) {
std::lock_guard lock{mStalledMutex};
mStalledTransactions.erase(transactionId);
}
std::optional<TransactionHandler::StalledTransactionInfo>
TransactionHandler::getStalledTransactionInfo(pid_t pid) {
std::lock_guard lock{mStalledMutex};
for (auto [_, stalledTransactionInfo] : mStalledTransactions) {
if (pid == stalledTransactionInfo.pid) {
return stalledTransactionInfo;
}
}
return std::nullopt;
}
void TransactionHandler::onLayerDestroyed(uint32_t layerId) {
std::lock_guard lock{mStalledMutex};
for (auto it = mStalledTransactions.begin(); it != mStalledTransactions.end();) {
if (it->second.layerId == layerId) {
it = mStalledTransactions.erase(it);
} else {
it++;
}
}
}
} // namespace android::surfaceflinger::frontend
|