File: Layer.h

package info (click to toggle)
android-platform-tools 35.0.2-1~exp6
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 211,716 kB
  • sloc: cpp: 995,749; java: 290,495; ansic: 145,647; xml: 58,531; python: 39,608; sh: 14,500; javascript: 5,198; asm: 4,866; makefile: 3,115; yacc: 769; awk: 368; ruby: 183; sql: 140; perl: 88; lex: 67
file content (1293 lines) | stat: -rw-r--r-- 56,685 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
/*
 * Copyright (C) 2007 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include <android/gui/DropInputMode.h>
#include <android/gui/ISurfaceComposerClient.h>
#include <gui/BufferQueue.h>
#include <gui/LayerState.h>
#include <gui/WindowInfo.h>
#include <layerproto/LayerProtoHeader.h>
#include <math/vec4.h>
#include <sys/types.h>
#include <ui/BlurRegion.h>
#include <ui/FloatRect.h>
#include <ui/FrameStats.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <ui/Region.h>
#include <ui/StretchEffect.h>
#include <ui/Transform.h>
#include <utils/RefBase.h>
#include <utils/Timers.h>

#include <compositionengine/LayerFE.h>
#include <compositionengine/LayerFECompositionState.h>
#include <scheduler/Fps.h>
#include <scheduler/Seamlessness.h>

#include <chrono>
#include <cstdint>
#include <list>
#include <optional>
#include <vector>

#include "Client.h"
#include "DisplayHardware/HWComposer.h"
#include "FrameTracker.h"
#include "LayerFE.h"
#include "LayerVector.h"
#include "Scheduler/LayerInfo.h"
#include "SurfaceFlinger.h"
#include "Tracing/LayerTracing.h"
#include "TransactionCallbackInvoker.h"

using namespace android::surfaceflinger;

namespace android {

class Client;
class Colorizer;
class DisplayDevice;
class GraphicBuffer;
class SurfaceFlinger;

namespace compositionengine {
class OutputLayer;
struct LayerFECompositionState;
}

namespace gui {
class LayerDebugInfo;
}

namespace frametimeline {
class SurfaceFrame;
} // namespace frametimeline

class Layer : public virtual RefBase {
public:
    // The following constants represent priority of the window. SF uses this information when
    // deciding which window has a priority when deciding about the refresh rate of the screen.
    // Priority 0 is considered the highest priority. -1 means that the priority is unset.
    static constexpr int32_t PRIORITY_UNSET = -1;
    // Windows that are in focus and voted for the preferred mode ID
    static constexpr int32_t PRIORITY_FOCUSED_WITH_MODE = 0;
    // // Windows that are in focus, but have not requested a specific mode ID.
    static constexpr int32_t PRIORITY_FOCUSED_WITHOUT_MODE = 1;
    // Windows that are not in focus, but voted for a specific mode ID.
    static constexpr int32_t PRIORITY_NOT_FOCUSED_WITH_MODE = 2;

    enum { // flags for doTransaction()
        eDontUpdateGeometryState = 0x00000001,
        eVisibleRegion = 0x00000002,
        eInputInfoChanged = 0x00000004
    };

    struct Geometry {
        uint32_t w;
        uint32_t h;
        ui::Transform transform;

        inline bool operator==(const Geometry& rhs) const {
            return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
                    (transform.ty() == rhs.transform.ty());
        }
        inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
    };

    using FrameRate = scheduler::LayerInfo::FrameRate;
    using FrameRateCompatibility = scheduler::FrameRateCompatibility;
    using FrameRateSelectionStrategy = scheduler::LayerInfo::FrameRateSelectionStrategy;

    struct State {
        int32_t z;
        ui::LayerStack layerStack;
        uint32_t flags;
        int32_t sequence; // changes when visible regions can change
        bool modified;
        // Crop is expressed in layer space coordinate.
        Rect crop;
        LayerMetadata metadata;
        // If non-null, a Surface this Surface's Z-order is interpreted relative to.
        wp<Layer> zOrderRelativeOf;
        bool isRelativeOf{false};

        // A list of surfaces whose Z-order is interpreted relative to ours.
        SortedVector<wp<Layer>> zOrderRelatives;
        half4 color;
        float cornerRadius;
        int backgroundBlurRadius;
        gui::WindowInfo inputInfo;
        wp<Layer> touchableRegionCrop;

        ui::Dataspace dataspace;

        uint64_t frameNumber;
        uint64_t previousFrameNumber;
        // high watermark framenumber to use to check for barriers to protect ourselves
        // from out of order transactions
        uint64_t barrierFrameNumber;
        ui::Transform transform;

        uint32_t producerId = 0;
        // high watermark producerId to use to check for barriers to protect ourselves
        // from out of order transactions
        uint32_t barrierProducerId = 0;

        uint32_t bufferTransform;
        bool transformToDisplayInverse;
        Region transparentRegionHint;
        std::shared_ptr<renderengine::ExternalTexture> buffer;
        sp<Fence> acquireFence;
        std::shared_ptr<FenceTime> acquireFenceTime;
        HdrMetadata hdrMetadata;
        Region surfaceDamageRegion;
        int32_t api;
        sp<NativeHandle> sidebandStream;
        mat4 colorTransform;
        bool hasColorTransform;
        // pointer to background color layer that, if set, appears below the buffer state layer
        // and the buffer state layer's children.  Z order will be set to
        // INT_MIN
        sp<Layer> bgColorLayer;

        // The deque of callback handles for this frame. The back of the deque contains the most
        // recent callback handle.
        std::deque<sp<CallbackHandle>> callbackHandles;
        bool colorSpaceAgnostic;
        nsecs_t desiredPresentTime = 0;
        bool isAutoTimestamp = true;

        // Length of the cast shadow. If the radius is > 0, a shadow of length shadowRadius will
        // be rendered around the layer.
        float shadowRadius;

        // Layer regions that are made of custom materials, like frosted glass
        std::vector<BlurRegion> blurRegions;

        // Priority of the layer assigned by Window Manager.
        int32_t frameRateSelectionPriority;

        // Default frame rate compatibility used to set the layer refresh rate votetype.
        FrameRateCompatibility defaultFrameRateCompatibility;
        FrameRate frameRate;

        // The combined frame rate of parents / children of this layer
        FrameRate frameRateForLayerTree;

        FrameRateSelectionStrategy frameRateSelectionStrategy;

        // Set by window manager indicating the layer and all its children are
        // in a different orientation than the display. The hint suggests that
        // the graphic producers should receive a transform hint as if the
        // display was in this orientation. When the display changes to match
        // the layer orientation, the graphic producer may not need to allocate
        // a buffer of a different size. ui::Transform::ROT_INVALID means the
        // a fixed transform hint is not set.
        ui::Transform::RotationFlags fixedTransformHint;

        // The vsync info that was used to start the transaction
        FrameTimelineInfo frameTimelineInfo;

        // When the transaction was posted
        nsecs_t postTime;
        sp<ITransactionCompletedListener> releaseBufferListener;
        // SurfaceFrame that tracks the timeline of Transactions that contain a Buffer. Only one
        // such SurfaceFrame exists because only one buffer can be presented on the layer per vsync.
        // If multiple buffers are queued, the prior ones will be dropped, along with the
        // SurfaceFrame that's tracking them.
        std::shared_ptr<frametimeline::SurfaceFrame> bufferSurfaceFrameTX;
        // A map of token(frametimelineVsyncId) to the SurfaceFrame that's tracking a transaction
        // that contains the token. Only one SurfaceFrame exisits for transactions that share the
        // same token, unless they are presented in different vsyncs.
        std::unordered_map<int64_t, std::shared_ptr<frametimeline::SurfaceFrame>>
                bufferlessSurfaceFramesTX;
        // An arbitrary threshold for the number of BufferlessSurfaceFrames in the state. Used to
        // trigger a warning if the number of SurfaceFrames crosses the threshold.
        static constexpr uint32_t kStateSurfaceFramesThreshold = 25;

        // Stretch effect to apply to this layer
        StretchEffect stretchEffect;

        // Whether or not this layer is a trusted overlay for input
        bool isTrustedOverlay;
        Rect bufferCrop;
        Rect destinationFrame;
        sp<IBinder> releaseBufferEndpoint;
        gui::DropInputMode dropInputMode;
        bool autoRefresh = false;
        bool dimmingEnabled = true;
        float currentHdrSdrRatio = 1.f;
        float desiredHdrSdrRatio = -1.f;
        gui::CachingHint cachingHint = gui::CachingHint::Enabled;
        int64_t latchedVsyncId = 0;
        bool useVsyncIdForRefreshRateSelection = false;
    };

    explicit Layer(const surfaceflinger::LayerCreationArgs& args);
    virtual ~Layer();

    static bool isLayerFocusedBasedOnPriority(int32_t priority);
    static void miniDumpHeader(std::string& result);

    // Provide unique string for each class type in the Layer hierarchy
    virtual const char* getType() const { return "Layer"; }

    // true if this layer is visible, false otherwise
    virtual bool isVisible() const;

    virtual sp<Layer> createClone(uint32_t mirrorRoot);

    // Set a 2x2 transformation matrix on the layer. This transform
    // will be applied after parent transforms, but before any final
    // producer specified transform.
    bool setMatrix(const layer_state_t::matrix22_t& matrix);

    // This second set of geometry attributes are controlled by
    // setGeometryAppliesWithResize, and their default mode is to be
    // immediate. If setGeometryAppliesWithResize is specified
    // while a resize is pending, then update of these attributes will
    // be delayed until the resize completes.

    // setPosition operates in parent buffer space (pre parent-transform) or display
    // space for top-level layers.
    bool setPosition(float x, float y);
    // Buffer space
    bool setCrop(const Rect& crop);

    // TODO(b/38182121): Could we eliminate the various latching modes by
    // using the layer hierarchy?
    // -----------------------------------------------------------------------
    virtual bool setLayer(int32_t z);
    virtual bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);

    virtual bool setAlpha(float alpha);
    bool setColor(const half3& /*color*/);

    // Set rounded corner radius for this layer and its children.
    //
    // We only support 1 radius per layer in the hierarchy, where parent layers have precedence.
    // The shape of the rounded corner rectangle is specified by the crop rectangle of the layer
    // from which we inferred the rounded corner radius.
    virtual bool setCornerRadius(float cornerRadius);
    // When non-zero, everything below this layer will be blurred by backgroundBlurRadius, which
    // is specified in pixels.
    virtual bool setBackgroundBlurRadius(int backgroundBlurRadius);
    virtual bool setBlurRegions(const std::vector<BlurRegion>& effectRegions);
    bool setTransparentRegionHint(const Region& transparent);
    virtual bool setTrustedOverlay(bool);
    virtual bool setFlags(uint32_t flags, uint32_t mask);
    virtual bool setLayerStack(ui::LayerStack);
    virtual ui::LayerStack getLayerStack(
            LayerVector::StateSet state = LayerVector::StateSet::Drawing) const;

    virtual bool setMetadata(const LayerMetadata& data);
    virtual void setChildrenDrawingParent(const sp<Layer>&);
    virtual bool reparent(const sp<IBinder>& newParentHandle) REQUIRES(mFlinger->mStateLock);
    virtual bool setColorTransform(const mat4& matrix);
    virtual mat4 getColorTransform() const;
    virtual bool hasColorTransform() const;
    virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; }
    virtual bool isDimmingEnabled() const { return getDrawingState().dimmingEnabled; }
    float getDesiredHdrSdrRatio() const { return getDrawingState().desiredHdrSdrRatio; }
    float getCurrentHdrSdrRatio() const { return getDrawingState().currentHdrSdrRatio; }
    gui::CachingHint getCachingHint() const { return getDrawingState().cachingHint; }

    bool setTransform(uint32_t /*transform*/);
    bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/);
    bool setBuffer(std::shared_ptr<renderengine::ExternalTexture>& /* buffer */,
                   const BufferData& /* bufferData */, nsecs_t /* postTime */,
                   nsecs_t /*desiredPresentTime*/, bool /*isAutoTimestamp*/,
                   std::optional<nsecs_t> /* dequeueTime */, const FrameTimelineInfo& /*info*/);
    void setDesiredPresentTime(nsecs_t /*desiredPresentTime*/, bool /*isAutoTimestamp*/);
    bool setDataspace(ui::Dataspace /*dataspace*/);
    bool setExtendedRangeBrightness(float currentBufferRatio, float desiredRatio);
    bool setDesiredHdrHeadroom(float desiredRatio);
    bool setCachingHint(gui::CachingHint cachingHint);
    bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/);
    bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/);
    bool setApi(int32_t /*api*/);
    bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/,
                           const FrameTimelineInfo& /* info*/, nsecs_t /* postTime */);
    bool setTransactionCompletedListeners(const std::vector<sp<CallbackHandle>>& /*handles*/,
                                          bool willPresent);
    virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace)
            REQUIRES(mFlinger->mStateLock);
    virtual bool setColorSpaceAgnostic(const bool agnostic);
    virtual bool setDimmingEnabled(const bool dimmingEnabled);
    virtual bool setDefaultFrameRateCompatibility(FrameRateCompatibility compatibility);
    virtual bool setFrameRateSelectionPriority(int32_t priority);
    virtual bool setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint);
    void setAutoRefresh(bool /* autoRefresh */);
    bool setDropInputMode(gui::DropInputMode);

    //  If the variable is not set on the layer, it traverses up the tree to inherit the frame
    //  rate priority from its parent.
    virtual int32_t getFrameRateSelectionPriority() const;
    //
    virtual FrameRateCompatibility getDefaultFrameRateCompatibility() const;
    //
    ui::Dataspace getDataSpace() const;

    virtual bool isFrontBuffered() const;

    virtual sp<LayerFE> getCompositionEngineLayerFE() const;
    virtual sp<LayerFE> copyCompositionEngineLayerFE() const;
    sp<LayerFE> getCompositionEngineLayerFE(const frontend::LayerHierarchy::TraversalPath&);
    sp<LayerFE> getOrCreateCompositionEngineLayerFE(const frontend::LayerHierarchy::TraversalPath&);

    const frontend::LayerSnapshot* getLayerSnapshot() const;
    frontend::LayerSnapshot* editLayerSnapshot();
    std::unique_ptr<frontend::LayerSnapshot> stealLayerSnapshot();
    void updateLayerSnapshot(std::unique_ptr<frontend::LayerSnapshot> snapshot);

    // If we have received a new buffer this frame, we will pass its surface
    // damage down to hardware composer. Otherwise, we must send a region with
    // one empty rect.
    void useSurfaceDamage();
    void useEmptyDamage();
    Region getVisibleRegion(const DisplayDevice*) const;
    void updateLastLatchTime(nsecs_t latchtime);

    /*
     * isOpaque - true if this surface is opaque
     *
     * This takes into account the buffer format (i.e. whether or not the
     * pixel format includes an alpha channel) and the "opaque" flag set
     * on the layer.  It does not examine the current plane alpha value.
     */
    bool isOpaque(const Layer::State&) const;

    /*
     * Returns whether this layer can receive input.
     */
    bool canReceiveInput() const;

    /*
     * Whether or not the layer should be considered visible for input calculations.
     */
    virtual bool isVisibleForInput() const {
        // For compatibility reasons we let layers which can receive input
        // receive input before they have actually submitted a buffer. Because
        // of this we use canReceiveInput instead of isVisible to check the
        // policy-visibility, ignoring the buffer state. However for layers with
        // hasInputInfo()==false we can use the real visibility state.
        // We are just using these layers for occlusion detection in
        // InputDispatcher, and obviously if they aren't visible they can't occlude
        // anything.
        return hasInputInfo() ? canReceiveInput() : isVisible();
    }

    /*
     * isProtected - true if the layer may contain protected contents in the
     * GRALLOC_USAGE_PROTECTED sense.
     */
    bool isProtected() const;

    /*
     * isFixedSize - true if content has a fixed size
     */
    virtual bool isFixedSize() const { return true; }

    /*
     * usesSourceCrop - true if content should use a source crop
     */
    bool usesSourceCrop() const { return hasBufferOrSidebandStream(); }

    // Most layers aren't created from the main thread, and therefore need to
    // grab the SF state lock to access HWC, but ContainerLayer does, so we need
    // to avoid grabbing the lock again to avoid deadlock
    virtual bool isCreatedFromMainThread() const { return false; }

    ui::Transform getActiveTransform(const Layer::State& s) const { return s.transform; }
    Region getActiveTransparentRegion(const Layer::State& s) const {
        return s.transparentRegionHint;
    }
    Rect getCrop(const Layer::State& s) const { return s.crop; }
    bool needsFiltering(const DisplayDevice*) const;

    // True if this layer requires filtering
    // This method is distinct from needsFiltering() in how the filter
    // requirement is computed. needsFiltering() compares displayFrame and crop,
    // where as this method transforms the displayFrame to layer-stack space
    // first. This method should be used if there is no physical display to
    // project onto when taking screenshots, as the filtering requirements are
    // different.
    // If the parent transform needs to be undone when capturing the layer, then
    // the inverse parent transform is also required.
    bool needsFilteringForScreenshots(const DisplayDevice*, const ui::Transform&) const;

    // from graphics API
    static ui::Dataspace translateDataspace(ui::Dataspace dataspace);
    void updateCloneBufferInfo();
    uint64_t mPreviousFrameNumber = 0;

    void onCompositionPresented(const DisplayDevice*,
                                const std::shared_ptr<FenceTime>& /*glDoneFence*/,
                                const std::shared_ptr<FenceTime>& /*presentFence*/,
                                const CompositorTiming&);

    // If a buffer was replaced this frame, release the former buffer
    void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/);

    /*
     * latchBuffer - called each time the screen is redrawn and returns whether
     * the visible regions need to be recomputed (this is a fairly heavy
     * operation, so this should be set only if needed). Typically this is used
     * to figure out if the content or size of a surface has changed.
     */
    bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/);

    bool latchBufferImpl(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/,
                         bool bgColorOnly);

    /*
     * Returns true if the currently presented buffer will be released when this layer state
     * is latched. This will return false if there is no buffer currently presented.
     */
    bool willReleaseBufferOnLatch() const;

    /*
     * Calls latchBuffer if the buffer has a frame queued and then releases the buffer.
     * This is used if the buffer is just latched and releases to free up the buffer
     * and will not be shown on screen.
     * Should only be called on the main thread.
     */
    void latchAndReleaseBuffer();

    /*
     * returns the rectangle that crops the content of the layer and scales it
     * to the layer's size.
     */
    Rect getBufferCrop() const;

    /*
     * Returns the transform applied to the buffer.
     */
    uint32_t getBufferTransform() const;

    sp<GraphicBuffer> getBuffer() const;
    const std::shared_ptr<renderengine::ExternalTexture>& getExternalTexture() const;

    /*
     * Returns if a frame is ready
     */
    bool hasReadyFrame() const;

    virtual int32_t getQueuedFrameCount() const { return 0; }

    /**
     * Returns active buffer size in the correct orientation. Buffer size is determined by undoing
     * any buffer transformations. Returns Rect::INVALID_RECT if the layer has no buffer or the
     * layer does not have a display frame and its parent is not bounded.
     */
    Rect getBufferSize(const Layer::State&) const;

    /**
     * Returns the source bounds. If the bounds are not defined, it is inferred from the
     * buffer size. Failing that, the bounds are determined from the passed in parent bounds.
     * For the root layer, this is the display viewport size.
     */
    FloatRect computeSourceBounds(const FloatRect& parentBounds) const;
    virtual FrameRate getFrameRateForLayerTree() const;

    bool getTransformToDisplayInverse() const;

    // Returns how rounded corners should be drawn for this layer.
    // A layer can override its parent's rounded corner settings if the parent's rounded
    // corner crop does not intersect with its own rounded corner crop.
    virtual frontend::RoundedCornerState getRoundedCornerState() const;

    bool hasRoundedCorners() const { return getRoundedCornerState().hasRoundedCorners(); }

    PixelFormat getPixelFormat() const;
    /**
     * Return whether this layer needs an input info. We generate InputWindowHandles for all
     * non-cursor buffered layers regardless of whether they have an InputChannel. This is to enable
     * the InputDispatcher to do PID based occlusion detection.
     */
    bool needsInputInfo() const {
        return (hasInputInfo() || hasBufferOrSidebandStream()) && !mPotentialCursor;
    }

    // Implements RefBase.
    void onFirstRef() override;

    struct BufferInfo {
        nsecs_t mDesiredPresentTime;
        std::shared_ptr<FenceTime> mFenceTime;
        sp<Fence> mFence;
        uint32_t mTransform{0};
        ui::Dataspace mDataspace{ui::Dataspace::UNKNOWN};
        Rect mCrop;
        uint32_t mScaleMode{NATIVE_WINDOW_SCALING_MODE_FREEZE};
        Region mSurfaceDamage;
        HdrMetadata mHdrMetadata;
        int mApi;
        PixelFormat mPixelFormat{PIXEL_FORMAT_NONE};
        bool mTransformToDisplayInverse{false};

        std::shared_ptr<renderengine::ExternalTexture> mBuffer;
        uint64_t mFrameNumber;
        sp<IBinder> mReleaseBufferEndpoint;

        bool mFrameLatencyNeeded{false};
        float mDesiredHdrSdrRatio = -1.f;
    };

    BufferInfo mBufferInfo;

    // implements compositionengine::LayerFE
    const compositionengine::LayerFECompositionState* getCompositionState() const;
    bool fenceHasSignaled() const;
    void onPreComposition(nsecs_t refreshStartTime);
    void onLayerDisplayed(ftl::SharedFuture<FenceResult>, ui::LayerStack layerStack,
                          std::function<FenceResult(FenceResult)>&& continuation = nullptr);

    void setWasClientComposed(const sp<Fence>& fence) {
        mLastClientCompositionFence = fence;
        mClearClientCompositionFenceOnLayerDisplayed = false;
    }

    const char* getDebugName() const;

    bool setShadowRadius(float shadowRadius);

    // Before color management is introduced, contents on Android have to be
    // desaturated in order to match what they appears like visually.
    // With color management, these contents will appear desaturated, thus
    // needed to be saturated so that they match what they are designed for
    // visually.
    bool isLegacyDataSpace() const;

    uint32_t getTransactionFlags() const { return mTransactionFlags; }

    static bool computeTrustedPresentationState(const FloatRect& bounds,
                                                const FloatRect& sourceBounds,
                                                const Region& coveredRegion,
                                                const FloatRect& screenBounds, float,
                                                const ui::Transform&,
                                                const TrustedPresentationThresholds&);
    void updateTrustedPresentationState(const DisplayDevice* display,
                                        const frontend::LayerSnapshot* snapshot, int64_t time_in_ms,
                                        bool leaveState);

    inline bool hasTrustedPresentationListener() {
        return mTrustedPresentationListener.callbackInterface != nullptr;
    }

    // Sets the masked bits.
    void setTransactionFlags(uint32_t mask);

    // Clears and returns the masked bits.
    uint32_t clearTransactionFlags(uint32_t mask);

    FloatRect getBounds(const Region& activeTransparentRegion) const;
    FloatRect getBounds() const;
    Rect getInputBoundsInDisplaySpace(const FloatRect& insetBounds,
                                      const ui::Transform& displayTransform);

    // Compute bounds for the layer and cache the results.
    void computeBounds(FloatRect parentBounds, ui::Transform parentTransform, float shadowRadius);

    int32_t getSequence() const { return sequence; }

    // For tracing.
    // TODO: Replace with raw buffer id from buffer metadata when that becomes available.
    // GraphicBuffer::getId() does not provide a reliable global identifier. Since the traces
    // creates its tracks by buffer id and has no way of associating a buffer back to the process
    // that created it, the current implementation is only sufficient for cases where a buffer is
    // only used within a single layer.
    uint64_t getCurrentBufferId() const { return getBuffer() ? getBuffer()->getId() : 0; }

    /*
     * isSecure - true if this surface is secure, that is if it prevents
     * screenshots or VNC servers. A surface can be set to be secure by the
     * application, being secure doesn't mean the surface has DRM contents.
     */
    bool isSecure() const;

    /*
     * isHiddenByPolicy - true if this layer has been forced invisible.
     * just because this is false, doesn't mean isVisible() is true.
     * For example if this layer has no active buffer, it may not be hidden by
     * policy, but it still can not be visible.
     */
    bool isHiddenByPolicy() const;

    // True if the layer should be skipped in screenshots, screen recordings,
    // and mirroring to external or virtual displays.
    bool isInternalDisplayOverlay() const;

    ui::LayerFilter getOutputFilter() const {
        return {getLayerStack(), isInternalDisplayOverlay()};
    }

    bool isRemovedFromCurrentState() const;

    perfetto::protos::LayerProto* writeToProto(perfetto::protos::LayersProto& layersProto,
                                               uint32_t traceFlags);
    void writeCompositionStateToProto(perfetto::protos::LayerProto* layerProto,
                                      ui::LayerStack layerStack);

    // Write states that are modified by the main thread. This includes drawing
    // state as well as buffer data. This should be called in the main or tracing
    // thread.
    void writeToProtoDrawingState(perfetto::protos::LayerProto* layerInfo);
    // Write drawing or current state. If writing current state, the caller should hold the
    // external mStateLock. If writing drawing state, this function should be called on the
    // main or tracing thread.
    void writeToProtoCommonState(perfetto::protos::LayerProto* layerInfo, LayerVector::StateSet,
                                 uint32_t traceFlags = LayerTracing::TRACE_ALL);

    gui::WindowInfo::Type getWindowType() const { return mWindowType; }

    bool updateMirrorInfo(const std::deque<Layer*>& cloneRootsPendingUpdates);

    /*
     * doTransaction - process the transaction. This is a good place to figure
     * out which attributes of the surface have changed.
     */
    virtual uint32_t doTransaction(uint32_t transactionFlags);

    /*
     * Remove relative z for the layer if its relative parent is not part of the
     * provided layer tree.
     */
    void removeRelativeZ(const std::vector<Layer*>& layersInTree);

    /*
     * Remove from current state and mark for removal.
     */
    void removeFromCurrentState() REQUIRES(mFlinger->mStateLock);

    /*
     * called with the state lock from a binder thread when the layer is
     * removed from the current list to the pending removal list
     */
    void onRemovedFromCurrentState() REQUIRES(mFlinger->mStateLock);

    /*
     * Called when the layer is added back to the current state list.
     */
    void addToCurrentState();

    /*
     * Sets display transform hint on BufferLayerConsumer.
     */
    void updateTransformHint(ui::Transform::RotationFlags);
    void skipReportingTransformHint();
    inline const State& getDrawingState() const { return mDrawingState; }
    inline State& getDrawingState() { return mDrawingState; }

    gui::LayerDebugInfo getLayerDebugInfo(const DisplayDevice*) const;

    void miniDumpLegacy(std::string& result, const DisplayDevice&) const;
    void miniDump(std::string& result, const frontend::LayerSnapshot&, const DisplayDevice&) const;
    void dumpFrameStats(std::string& result) const;
    void dumpOffscreenDebugInfo(std::string& result) const;
    void clearFrameStats();
    void logFrameStats();
    void getFrameStats(FrameStats* outStats) const;
    void onDisconnect();

    ui::Transform getTransform() const;
    bool isTransformValid() const;

    // Returns the Alpha of the Surface, accounting for the Alpha
    // of parent Surfaces in the hierarchy (alpha's will be multiplied
    // down the hierarchy).
    half getAlpha() const;
    half4 getColor() const;
    int32_t getBackgroundBlurRadius() const;
    bool drawShadows() const { return mEffectiveShadowRadius > 0.f; };

    // Returns the transform hint set by Window Manager on the layer or one of its parents.
    // This traverses the current state because the data is needed when creating
    // the layer(off drawing thread) and the hint should be available before the producer
    // is ready to acquire a buffer.
    ui::Transform::RotationFlags getFixedTransformHint() const;

    /**
     * Traverse this layer and it's hierarchy of children directly. Unlike traverseInZOrder
     * which will not emit children who have relativeZOrder to another layer, this method
     * just directly emits all children. It also emits them in no particular order.
     * So this method is not suitable for graphical operations, as it doesn't represent
     * the scene state, but it's also more efficient than traverseInZOrder and so useful for
     * book-keeping.
     */
    void traverse(LayerVector::StateSet, const LayerVector::Visitor&);
    void traverseInReverseZOrder(LayerVector::StateSet, const LayerVector::Visitor&);
    void traverseInZOrder(LayerVector::StateSet, const LayerVector::Visitor&);
    void traverseChildren(const LayerVector::Visitor&);

    /**
     * Traverse only children in z order, ignoring relative layers that are not children of the
     * parent.
     */
    void traverseChildrenInZOrder(LayerVector::StateSet, const LayerVector::Visitor&);

    size_t getDescendantCount() const;
    size_t getChildrenCount() const { return mDrawingChildren.size(); }
    bool isHandleAlive() const { return mHandleAlive; }
    bool onHandleDestroyed() { return mHandleAlive = false; }

    // ONLY CALL THIS FROM THE LAYER DTOR!
    // See b/141111965.  We need to add current children to offscreen layers in
    // the layer dtor so as not to dangle layers.  Since the layer has not
    // committed its transaction when the layer is destroyed, we must add
    // current children.  This is safe in the dtor as we will no longer update
    // the current state, but should not be called anywhere else!
    LayerVector& getCurrentChildren() { return mCurrentChildren; }

    void addChild(const sp<Layer>&);
    // Returns index if removed, or negative value otherwise
    // for symmetry with Vector::remove
    ssize_t removeChild(const sp<Layer>& layer);
    sp<Layer> getParent() const { return mCurrentParent.promote(); }

    // Should be called with the surfaceflinger statelock held
    bool isAtRoot() const { return mIsAtRoot; }
    void setIsAtRoot(bool isAtRoot) { mIsAtRoot = isAtRoot; }

    bool hasParent() const { return getParent() != nullptr; }
    Rect getScreenBounds(bool reduceTransparentRegion = true) const;
    bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
    bool setChildRelativeLayer(const sp<Layer>& childLayer,
            const sp<IBinder>& relativeToHandle, int32_t relativeZ);

    // Copy the current list of children to the drawing state. Called by
    // SurfaceFlinger to complete a transaction.
    void commitChildList();
    int32_t getZ(LayerVector::StateSet) const;

    /**
     * Returns the cropped buffer size or the layer crop if the layer has no buffer. Return
     * INVALID_RECT if the layer has no buffer and no crop.
     * A layer with an invalid buffer size and no crop is considered to be boundless. The layer
     * bounds are constrained by its parent bounds.
     */
    Rect getCroppedBufferSize(const Layer::State& s) const;

    bool setFrameRate(FrameRate::FrameRateVote);
    bool setFrameRateCategory(FrameRateCategory, bool smoothSwitchOnly);

    bool setFrameRateSelectionStrategy(FrameRateSelectionStrategy);

    virtual void setFrameTimelineInfoForBuffer(const FrameTimelineInfo& /*info*/) {}
    void setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo& info, nsecs_t postTime);
    void setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo& info,
                                                       nsecs_t postTime);

    void addSurfaceFrameDroppedForBuffer(std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame,
                                         nsecs_t dropTime);
    void addSurfaceFramePresentedForBuffer(
            std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame, nsecs_t acquireFenceTime,
            nsecs_t currentLatchTime);

    std::shared_ptr<frametimeline::SurfaceFrame> createSurfaceFrameForTransaction(
            const FrameTimelineInfo& info, nsecs_t postTime);
    std::shared_ptr<frametimeline::SurfaceFrame> createSurfaceFrameForBuffer(
            const FrameTimelineInfo& info, nsecs_t queueTime, std::string debugName);
    void setFrameTimelineVsyncForSkippedFrames(const FrameTimelineInfo& info, nsecs_t postTime,
                                               std::string debugName);

    bool setTrustedPresentationInfo(TrustedPresentationThresholds const& thresholds,
                                    TrustedPresentationListener const& listener);

    // Creates a new handle each time, so we only expect
    // this to be called once.
    sp<IBinder> getHandle();
    const std::string& getName() const { return mName; }
    bool getPremultipledAlpha() const;
    void setInputInfo(const gui::WindowInfo& info);

    struct InputDisplayArgs {
        const ui::Transform* transform = nullptr;
        bool isSecure = false;
    };
    gui::WindowInfo fillInputInfo(const InputDisplayArgs& displayArgs);

    /**
     * Returns whether this layer has an explicitly set input-info.
     */
    bool hasInputInfo() const;

    // Sets the gui::GameMode for the tree rooted at this layer. A layer in the tree inherits this
    // gui::GameMode unless it (or an ancestor) has GAME_MODE_METADATA.
    void setGameModeForTree(gui::GameMode);

    void setGameMode(gui::GameMode gameMode) { mGameMode = gameMode; }
    gui::GameMode getGameMode() const { return mGameMode; }

    virtual uid_t getOwnerUid() const { return mOwnerUid; }

    pid_t getOwnerPid() { return mOwnerPid; }

    int32_t getOwnerAppId() { return mOwnerAppId; }

    // This layer is not a clone, but it's the parent to the cloned hierarchy. The
    // variable mClonedChild represents the top layer that will be cloned so this
    // layer will be the parent of mClonedChild.
    // The layers in the cloned hierarchy will match the lifetime of the real layers. That is
    // if the real layer is destroyed, then the clone layer will also be destroyed.
    sp<Layer> mClonedChild;
    bool mHadClonedChild = false;
    void setClonedChild(const sp<Layer>& mClonedChild);

    mutable bool contentDirty{false};
    Region surfaceDamageRegion;

    // True when the surfaceDamageRegion is recognized as a small area update.
    bool mSmallDirty{false};
    // Used to check if mUsedVsyncIdForRefreshRateSelection should be expired when it stop updating.
    nsecs_t mMaxTimeForUseVsyncId = 0;
    // True when DrawState.useVsyncIdForRefreshRateSelection previously set to true during updating
    // buffer.
    bool mUsedVsyncIdForRefreshRateSelection{false};

    // Layer serial number.  This gives layers an explicit ordering, so we
    // have a stable sort order when their layer stack and Z-order are
    // the same.
    const int32_t sequence;

    bool mPendingHWCDestroy{false};

    bool backpressureEnabled() const {
        return mDrawingState.flags & layer_state_t::eEnableBackpressure;
    }

    bool setStretchEffect(const StretchEffect& effect);
    StretchEffect getStretchEffect() const;
    bool enableBorder(bool shouldEnable, float width, const half4& color);
    bool isBorderEnabled();
    float getBorderWidth();
    const half4& getBorderColor();

    bool setBufferCrop(const Rect& /* bufferCrop */);
    bool setDestinationFrame(const Rect& /* destinationFrame */);
    // See mPendingBufferTransactions
    void decrementPendingBufferCount();
    std::atomic<int32_t>* getPendingBufferCounter() { return &mPendingBufferTransactions; }
    std::string getPendingBufferCounterName() { return mBlastTransactionName; }
    bool updateGeometry();

    bool isSimpleBufferUpdate(const layer_state_t& s) const;

    static bool isOpaqueFormat(PixelFormat format);

    // Updates the LayerSnapshot. This must be called prior to sending layer data to
    // CompositionEngine or RenderEngine (i.e. before calling CompositionEngine::present or
    // LayerFE::prepareClientComposition).
    //
    // TODO(b/238781169) Remove direct calls to RenderEngine::drawLayers that don't go through
    // CompositionEngine to create a single path for composing layers.
    void updateSnapshot(bool updateGeometry);
    void updateChildrenSnapshots(bool updateGeometry);
    void updateMetadataSnapshot(const LayerMetadata& parentMetadata);
    void updateRelativeMetadataSnapshot(const LayerMetadata& relativeLayerMetadata,
                                        std::unordered_set<Layer*>& visited);
    sp<Layer> getClonedFrom() const {
        return mClonedFrom != nullptr ? mClonedFrom.promote() : nullptr;
    }
    bool isClone() { return mClonedFrom != nullptr; }

    bool willPresentCurrentTransaction() const;

    void callReleaseBufferCallback(const sp<ITransactionCompletedListener>& listener,
                                   const sp<GraphicBuffer>& buffer, uint64_t framenumber,
                                   const sp<Fence>& releaseFence);
    bool setFrameRateForLayerTreeLegacy(FrameRate, nsecs_t now);
    bool setFrameRateForLayerTree(FrameRate, const scheduler::LayerProps&, nsecs_t now);
    void recordLayerHistoryBufferUpdate(const scheduler::LayerProps&, nsecs_t now);
    void recordLayerHistoryAnimationTx(const scheduler::LayerProps&, nsecs_t now);
    auto getLayerProps() const {
        return scheduler::LayerProps{.visible = isVisible(),
                                     .bounds = getBounds(),
                                     .transform = getTransform(),
                                     .setFrameRateVote = getFrameRateForLayerTree(),
                                     .frameRateSelectionPriority = getFrameRateSelectionPriority(),
                                     .isSmallDirty = mSmallDirty,
                                     .isFrontBuffered = isFrontBuffered()};
    };
    bool hasBuffer() const { return mBufferInfo.mBuffer != nullptr; }
    void setTransformHint(std::optional<ui::Transform::RotationFlags> transformHint) {
        mTransformHint = transformHint;
    }
    void commitTransaction();
    // Keeps track of the previously presented layer stacks. This is used to get
    // the release fences from the correct displays when we release the last buffer
    // from the layer.
    std::vector<ui::LayerStack> mPreviouslyPresentedLayerStacks;
    struct FenceAndContinuation {
        ftl::SharedFuture<FenceResult> future;
        std::function<FenceResult(FenceResult)> continuation;

        ftl::SharedFuture<FenceResult> chain() const {
            if (continuation) {
                return ftl::Future(future).then(continuation).share();
            } else {
                return future;
            }
        }
    };
    std::vector<FenceAndContinuation> mAdditionalPreviousReleaseFences;
    // Exposed so SurfaceFlinger can assert that it's held
    const sp<SurfaceFlinger> mFlinger;

    // Check if the damage region is a small dirty.
    void setIsSmallDirty(const Region& damageRegion, const ui::Transform& layerToDisplayTransform);
    void setIsSmallDirty(frontend::LayerSnapshot* snapshot);

protected:
    // For unit tests
    friend class TestableSurfaceFlinger;
    friend class FpsReporterTest;
    friend class RefreshRateSelectionTest;
    friend class SetFrameRateTest;
    friend class TransactionFrameTracerTest;
    friend class TransactionSurfaceFrameTest;

    virtual void setInitialValuesForClone(const sp<Layer>& clonedFrom, uint32_t mirrorRootId);
    void preparePerFrameCompositionState();
    void preparePerFrameBufferCompositionState();
    void preparePerFrameEffectsCompositionState();
    void gatherBufferInfo();
    void onSurfaceFrameCreated(const std::shared_ptr<frametimeline::SurfaceFrame>&);

    bool isClonedFromAlive() { return getClonedFrom() != nullptr; }

    void cloneDrawingState(const Layer* from);
    void updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
    void updateClonedChildren(const sp<Layer>& mirrorRoot,
                              std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
    void updateClonedRelatives(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
    void addChildToDrawing(const sp<Layer>&);
    void updateClonedInputInfo(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);

    void prepareBasicGeometryCompositionState();
    void prepareGeometryCompositionState();
    void prepareCursorCompositionState();

    uint32_t getEffectiveUsage(uint32_t usage) const;

    /**
     * Setup rounded corners coordinates of this layer, taking into account the layer bounds and
     * crop coordinates, transforming them into layer space.
     */
    void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const;
    void setParent(const sp<Layer>&);
    LayerVector makeTraversalList(LayerVector::StateSet, bool* outSkipRelativeZUsers);
    void addZOrderRelative(const wp<Layer>& relative);
    void removeZOrderRelative(const wp<Layer>& relative);
    compositionengine::OutputLayer* findOutputLayerForDisplay(const DisplayDevice*) const;
    compositionengine::OutputLayer* findOutputLayerForDisplay(
            const DisplayDevice*, const frontend::LayerHierarchy::TraversalPath& path) const;
    bool usingRelativeZ(LayerVector::StateSet) const;

    virtual ui::Transform getInputTransform() const;
    /**
     * Get the bounds in layer space within which this layer can receive input.
     *
     * These bounds are used to:
     * - Determine the input frame for the layer to be used for occlusion detection; and
     * - Determine the coordinate space within which the layer will receive input. The top-left of
     *   this rect will be the origin of the coordinate space that the input events sent to the
     *   layer will be in (prior to accounting for surface insets).
     *
     * The layer can still receive touch input if these bounds are invalid if
     * "replaceTouchableRegionWithCrop" is specified. In this case, the layer will receive input
     * in this layer's space, regardless of the specified crop layer.
     */
    std::pair<FloatRect, bool> getInputBounds(bool fillParentBounds) const;

    bool mPremultipliedAlpha{true};
    const std::string mName;
    const std::string mTransactionName{"TX - " + mName};

    // These are only accessed by the main thread or the tracing thread.
    State mDrawingState;

    TrustedPresentationThresholds mTrustedPresentationThresholds;
    TrustedPresentationListener mTrustedPresentationListener;
    bool mLastComputedTrustedPresentationState = false;
    bool mLastReportedTrustedPresentationState = false;
    int64_t mEnteredTrustedPresentationStateTime = -1;

    uint32_t mTransactionFlags{0};
    // Updated in doTransaction, used to track the last sequence number we
    // committed. Currently this is really only used for updating visible
    // regions.
    int32_t mLastCommittedTxSequence = -1;

    // Timestamp history for UIAutomation. Thread safe.
    FrameTracker mFrameTracker;

    // main thread
    sp<NativeHandle> mSidebandStream;
    // False if the buffer and its contents have been previously used for GPU
    // composition, true otherwise.
    bool mIsActiveBufferUpdatedForGpu = true;

    // We encode unset as -1.
    std::atomic<uint64_t> mCurrentFrameNumber{0};
    // Whether filtering is needed b/c of the drawingstate
    bool mNeedsFiltering{false};

    std::atomic<bool> mRemovedFromDrawingState{false};

    // page-flip thread (currently main thread)
    bool mProtectedByApp{false}; // application requires protected path to external sink

    // protected by mLock
    mutable Mutex mLock;

    const wp<Client> mClientRef;

    // This layer can be a cursor on some displays.
    bool mPotentialCursor{false};

    LayerVector mCurrentChildren{LayerVector::StateSet::Current};
    LayerVector mDrawingChildren{LayerVector::StateSet::Drawing};

    wp<Layer> mCurrentParent;
    wp<Layer> mDrawingParent;

    // Window types from WindowManager.LayoutParams
    const gui::WindowInfo::Type mWindowType;

    // The owner of the layer. If created from a non system process, it will be the calling uid.
    // If created from a system process, the value can be passed in.
    uid_t mOwnerUid;

    // The owner pid of the layer. If created from a non system process, it will be the calling pid.
    // If created from a system process, the value can be passed in.
    pid_t mOwnerPid;

    int32_t mOwnerAppId;

    // Keeps track of the time SF latched the last buffer from this layer.
    // Used in buffer stuffing analysis in FrameTimeline.
    nsecs_t mLastLatchTime = 0;

    mutable bool mDrawingStateModified = false;

    sp<Fence> mLastClientCompositionFence;
    bool mClearClientCompositionFenceOnLayerDisplayed = false;
private:
    // Range of uids allocated for a user.
    // This value is taken from android.os.UserHandle#PER_USER_RANGE.
    static constexpr int32_t PER_USER_RANGE = 100000;

    friend class SlotGenerationTest;
    friend class TransactionFrameTracerTest;
    friend class TransactionSurfaceFrameTest;

    bool getAutoRefresh() const { return mDrawingState.autoRefresh; }
    bool getSidebandStreamChanged() const { return mSidebandStreamChanged; }

    std::atomic<bool> mSidebandStreamChanged{false};

    // Returns true if the layer can draw shadows on its border.
    virtual bool canDrawShadows() const { return true; }

    aidl::android::hardware::graphics::composer3::Composition getCompositionType(
            const DisplayDevice&) const;
    aidl::android::hardware::graphics::composer3::Composition getCompositionType(
            const compositionengine::OutputLayer*) const;
    /**
     * Returns an unsorted vector of all layers that are part of this tree.
     * That includes the current layer and all its descendants.
     */
    std::vector<Layer*> getLayersInTree(LayerVector::StateSet);
    /**
     * Traverses layers that are part of this tree in the correct z order.
     * layersInTree must be sorted before calling this method.
     */
    void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
                                       LayerVector::StateSet, const LayerVector::Visitor&);
    LayerVector makeChildrenTraversalList(LayerVector::StateSet,
                                          const std::vector<Layer*>& layersInTree);

    void updateTreeHasFrameRateVote();
    bool propagateFrameRateForLayerTree(FrameRate parentFrameRate, bool overrideChildren,
                                        bool* transactionNeeded);
    void setZOrderRelativeOf(const wp<Layer>& relativeOf);
    bool isTrustedOverlay() const;
    gui::DropInputMode getDropInputMode() const;
    void handleDropInputMode(gui::WindowInfo& info) const;

    // Find the root of the cloned hierarchy, this means the first non cloned parent.
    // This will return null if first non cloned parent is not found.
    sp<Layer> getClonedRoot();

    // Finds the top most layer in the hierarchy. This will find the root Layer where the parent is
    // null.
    sp<Layer> getRootLayer();

    // Fills in the touch occlusion mode of the first parent (including this layer) that
    // hasInputInfo() or no-op if no such parent is found.
    void fillTouchOcclusionMode(gui::WindowInfo& info);

    // Fills in the frame and transform info for the gui::WindowInfo.
    void fillInputFrameInfo(gui::WindowInfo&, const ui::Transform& screenToDisplay);

    inline void tracePendingBufferCount(int32_t pendingBuffers);

    // Latch sideband stream and returns true if the dirty region should be updated.
    bool latchSidebandStream(bool& recomputeVisibleRegions);

    bool hasFrameUpdate() const;

    void updateTexImage(nsecs_t latchTime, bool bgColorOnly = false);

    // Crop that applies to the buffer
    Rect computeBufferCrop(const State& s);

    void callReleaseBufferCallback(const sp<ITransactionCompletedListener>& listener,
                                   const sp<GraphicBuffer>& buffer, uint64_t framenumber,
                                   const sp<Fence>& releaseFence,
                                   uint32_t currentMaxAcquiredBufferCount);

    // Returns true if the transformed buffer size does not match the layer size and we need
    // to apply filtering.
    bool bufferNeedsFiltering() const;

    // Returns true if there is a valid color to fill.
    bool fillsColor() const;
    // Returns true if this layer has a blur value.
    bool hasBlur() const;
    bool hasEffect() const { return fillsColor() || drawShadows() || hasBlur(); }
    bool hasBufferOrSidebandStream() const {
        return ((mSidebandStream != nullptr) || (mBufferInfo.mBuffer != nullptr));
    }

    bool hasBufferOrSidebandStreamInDrawing() const {
        return ((mDrawingState.sidebandStream != nullptr) || (mDrawingState.buffer != nullptr));
    }

    bool hasSomethingToDraw() const { return hasEffect() || hasBufferOrSidebandStream(); }

    // Fills the provided vector with the currently available JankData and removes the processed
    // JankData from the pending list.
    void transferAvailableJankData(const std::deque<sp<CallbackHandle>>& handles,
                                   std::vector<JankData>& jankData);

    bool shouldOverrideChildrenFrameRate() const {
        return getDrawingState().frameRateSelectionStrategy ==
                FrameRateSelectionStrategy::OverrideChildren;
    }

    bool shouldPropagateFrameRate() const {
        return getDrawingState().frameRateSelectionStrategy != FrameRateSelectionStrategy::Self;
    }

    // Cached properties computed from drawing state
    // Effective transform taking into account parent transforms and any parent scaling, which is
    // a transform from the current layer coordinate space to display(screen) coordinate space.
    ui::Transform mEffectiveTransform;

    // Bounds of the layer before any transformation is applied and before it has been cropped
    // by its parents.
    FloatRect mSourceBounds;

    // Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and
    // its parent bounds.
    FloatRect mBounds;

    // Layer bounds in screen space.
    FloatRect mScreenBounds;

    bool mGetHandleCalled = false;

    // The current layer is a clone of mClonedFrom. This means that this layer will update it's
    // properties based on mClonedFrom. When mClonedFrom latches a new buffer for BufferLayers,
    // this layer will update it's buffer. When mClonedFrom updates it's drawing state, children,
    // and relatives, this layer will update as well.
    wp<Layer> mClonedFrom;

    // The inherited shadow radius after taking into account the layer hierarchy. This is the
    // final shadow radius for this layer. If a shadow is specified for a layer, then effective
    // shadow radius is the set shadow radius, otherwise its the parent's shadow radius.
    float mEffectiveShadowRadius = 0.f;

    // Game mode for the layer. Set by WindowManagerShell and recorded by SurfaceFlingerStats.
    gui::GameMode mGameMode = gui::GameMode::Unsupported;

    // A list of regions on this layer that should have blurs.
    const std::vector<BlurRegion> getBlurRegions() const;

    bool mIsAtRoot = false;

    uint32_t mLayerCreationFlags;

    bool findInHierarchy(const sp<Layer>&);

    bool mBorderEnabled = false;
    float mBorderWidth;
    half4 mBorderColor;

    void setTransformHintLegacy(ui::Transform::RotationFlags);
    void releasePreviousBuffer();
    void resetDrawingStateBufferInfo();

    // Transform hint provided to the producer. This must be accessed holding
    // the mStateLock.
    ui::Transform::RotationFlags mTransformHintLegacy = ui::Transform::ROT_0;
    bool mSkipReportingTransformHint = true;
    std::optional<ui::Transform::RotationFlags> mTransformHint = std::nullopt;

    ReleaseCallbackId mPreviousReleaseCallbackId = ReleaseCallbackId::INVALID_ID;
    sp<IBinder> mPreviousReleaseBufferEndpoint;

    bool mReleasePreviousBuffer = false;

    // Stores the last set acquire fence signal time used to populate the callback handle's acquire
    // time.
    std::variant<nsecs_t, sp<Fence>> mCallbackHandleAcquireTimeOrFence = -1;

    std::deque<std::shared_ptr<android::frametimeline::SurfaceFrame>> mPendingJankClassifications;
    // An upper bound on the number of SurfaceFrames in the pending classifications deque.
    static constexpr int kPendingClassificationMaxSurfaceFrames = 50;

    const std::string mBlastTransactionName{"BufferTX - " + mName};
    // This integer is incremented everytime a buffer arrives at the server for this layer,
    // and decremented when a buffer is dropped or latched. When changed the integer is exported
    // to systrace with ATRACE_INT and mBlastTransactionName. This way when debugging perf it is
    // possible to see when a buffer arrived at the server, and in which frame it latched.
    //
    // You can understand the trace this way:
    //     - If the integer increases, a buffer arrived at the server.
    //     - If the integer decreases in latchBuffer, that buffer was latched
    //     - If the integer decreases in setBuffer or doTransaction, a buffer was dropped
    std::atomic<int32_t> mPendingBufferTransactions{0};

    // Contains requested position and matrix updates. This will be applied if the client does
    // not specify a destination frame.
    ui::Transform mRequestedTransform;

    sp<LayerFE> mLegacyLayerFE;
    std::vector<std::pair<frontend::LayerHierarchy::TraversalPath, sp<LayerFE>>> mLayerFEs;
    std::unique_ptr<frontend::LayerSnapshot> mSnapshot =
            std::make_unique<frontend::LayerSnapshot>();
    bool mHandleAlive = false;
};

std::ostream& operator<<(std::ostream& stream, const Layer::FrameRate& rate);

} // namespace android